Characteristic discontinuity of the reflectivity curve in vicinity of total reflection in the case of an attractive slowly varying potential
暂无分享,去创建一个
The reflection of a plane wave on a potential which is zero at infinity may be calculated by a one dimensional Schrodinger equation (ħ/2 m) ψ″+Eψ=Vψ, where E is the energy of the incidental wave and V the potential. When the energy is negative, the reflection is total (R(E)=1); consequently we expect lim/E→0 + R(E) to be equal to 1, the reflectivity curve being then continuous. But this is not always the case. When the potential is attractive and proportional to −1/(Z+Z 0 )α where 0 La reflexion d'une onde plane sur un potentiel nul a l'infini est susceptible d'etre calculee a partir de l'equation de Schrodinger a une dimension: (ħ 2 /2 m) ψ″+Eψ=Vψ ou E est l'energie de l'onde incidente et V le potentiel. Lorsque l'energie est negative, la reflexion est totale (R(E)=1); on s'attend donc a ce que lim/E→0 + R(E)=1, la courbe de reflectivite etant alors continue. Mais ce n'est pas toujours le cas. Lorsque le potentiel est attractif et est proportionnel a −1/(Z+Z 0 )α ou 0<α<2, lim/E→0 + R(E) existe bien, mais est inferieure a 1. On observe donc une discontinuite. L'objet de l'etude que voici est de demonter l'existence de cette limite et d'en calculer explicitement la valeur
[1] M. Daoud,et al. Profiles of Adsorbed Polymer Layers Observed by Neutron Reflection , 1988 .
[2] Schack,et al. One-to-one correspondence between slowly decaying interfacial profiles and reflectivity. , 1987, Physical review letters.
[3] P. G. de Gennes,et al. Conformations of Polymers Attached to an Interface , 1980 .