Multi-qubit parity measurement in circuit quantum electrodynamics

We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single-photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure.

[1]  Raymond Kapral,et al.  Quantum dynamics in open quantum-classical systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Austin G. Fowler,et al.  Erratum: High-threshold universal quantum computation on the surface code [Phys. Rev. A 80, 052312 (2009)] , 2013 .

[3]  S M Girvin,et al.  Stabilizer quantum error correction toolbox for superconducting qubits. , 2013, Physical review letters.

[4]  D Cavalcanti,et al.  Distribution of entanglement in large-scale quantum networks , 2012, Reports on progress in physics. Physical Society.

[5]  David Poulin,et al.  Subsystem surface codes with three-qubit check operators , 2012, Quantum Inf. Comput..

[6]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[7]  John A Smolin,et al.  Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. , 2012, Physical review letters.

[8]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[9]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[10]  D. Poulin,et al.  Quantum-error-correction benchmarks for continuous weak-parity measurements , 2012, 1204.3793.

[11]  L. DiCarlo,et al.  Initialization by measurement of a two-qubit superconducting circuit , 2012, 1204.2479.

[12]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[13]  Caner Özdemii̇r Wiley Series in Microwave and Optical Engineering , 2012 .

[14]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[15]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[16]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[17]  T. Palomaki,et al.  Demonstration of a single-photon router in the microwave regime. , 2011, Physical review letters.

[18]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[19]  Wei Feng,et al.  Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback , 2011, 1101.4327.

[20]  Martin Suchara,et al.  Constructions and noise threshold of topological subsystem codes , 2010, Journal of Physics A: Mathematical and Theoretical.

[21]  A C Doherty,et al.  Circuit QED with a nonlinear resonator: ac-Stark shift and dephasing. , 2010, Physical review letters.

[22]  G. Hilton,et al.  Design and Testing of Superconducting Microwave Passive Components for Quantum Information Processing , 2010, IEEE Transactions on Applied Superconductivity.

[23]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[24]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[25]  F. Wellstood,et al.  Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators , 2010, IEEE Transactions on Applied Superconductivity.

[26]  Jerry Chow,et al.  Detecting highly entangled states with a joint qubit readout , 2010 .

[27]  Jens Koch,et al.  Time-reversal-symmetry breaking in circuit-QED-based photon lattices , 2010, 1006.0762.

[28]  P. Hänggi,et al.  Two-resonator circuit quantum electrodynamics: Dissipative theory , 2010 .

[29]  L. Tornberg,et al.  High-fidelity feedback-assisted parity measurement in circuit QED , 2010, 1003.5488.

[30]  M. Mariantoni,et al.  Planck spectroscopy and quantum noise of microwave beam splitters. , 2010, Physical review letters.

[31]  Mary Beth Rothwell,et al.  High-coherence hybrid superconducting qubit. , 2010, Physical review letters.

[32]  S. Girvin,et al.  Quantum non-demolition detection of single microwave photons in a circuit , 2010, 1003.2734.

[33]  D. DiVincenzo,et al.  Superconducting resonators as beam splitters for linear-optics quantum computation. , 2010, Physical review letters.

[34]  Alexandre Blais,et al.  Tunable joint measurements in the dispersive regime of cavity QED , 2009, 0911.5322.

[35]  M. Mariantoni,et al.  Two-resonator circuit QED: Dissipative Theory , 2009, 0911.2657.

[36]  L. DiCarlo,et al.  Entanglement Metrology Using a Joint Readout of Superconducting Qubits , 2009, 0908.1955.

[37]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[38]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[39]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[40]  Hideo Mabuchi,et al.  Physical model of continuous two-qubit parity measurement in a cavity-QED network , 2008, 0812.1246.

[41]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[42]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[43]  S. Filipp,et al.  Coplanar waveguide resonators for circuit quantum electrodynamics , 2008, 0807.4094.

[44]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[45]  R. J. Schoelkopf,et al.  Analog information processing at the quantum limit with a Josephson ring modulator , 2008, 0805.3452.

[46]  T. Duty,et al.  Tuning the field in a microwave resonator faster than the photon lifetime , 2008 .

[47]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[48]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[49]  S. Girvin,et al.  Quantum information processing with circuit quantum electrodynamics , 2006, cond-mat/0612038.

[50]  R. Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2006, Physical review letters.

[51]  Andrew W. Cross,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2006, Physical review letters.

[52]  C. Beenakker,et al.  Parity meter for charge qubits: An efficient quantum entangler , 2006, cond-mat/0602514.

[53]  Shanhui Fan,et al.  Coherent single photon transport in one-dimensional waveguide coupledwith superconducting quantum bits , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[54]  W. Munro,et al.  Quantum error correction via robust probe modes , 2005, quant-ph/0511098.

[55]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[56]  Daniel Loss,et al.  Fermionic Bell-State Analyzer for Spin Qubits , 2005, Science.

[57]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[58]  Wenjin Mao,et al.  Mesoscopic quadratic quantum measurements. , 2004, Physical review letters.

[59]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical review letters.

[60]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[61]  R. Simons Coplanar waveguide circuits, components, and systems , 2001 .

[62]  D. Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.

[63]  K. C. Gupta,et al.  Design and optimization of CPW circuits using EM-ANN models for CPW components , 1997 .

[64]  M. Scully,et al.  Quantum eraser: A proposed photon correlation experiment concerning observation and , 1982 .

[65]  R. Glauber,et al.  Density Operators for Coherent Fields , 1966 .

[66]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[67]  Robert W. Newcomb,et al.  Linear multiport synthesis , 1966 .