Analysis of momentum adaptive filtering algorithms

This article analyzes the momentum LMS algorithm and other momentum algorithms using asymptotic techniques that provide information regarding the almost sure behavior of the parameter estimates and their asymptotic distribution. The analysis does not make any assumptions on the autocorrelation function of the input process.

[1]  J. Proakis,et al.  Channel identification for high speed digital communications , 1974 .

[2]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[3]  D. Esteban,et al.  Application of quadrature mirror filters to split band voice coding schemes , 1977 .

[4]  P. Chu Quadrature mirror filter design for an arbitrary number of equal bandwidth channels , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[6]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[7]  Richard V. Cox,et al.  The design of uniformly and nonuniformly spaced pseudoquadrature mirror filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[8]  Ali N. Akansu,et al.  Subband coding of video with adaptive vector quantization , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[9]  R. Durrett Probability: Theory and Examples , 1993 .

[10]  John J. Shynk,et al.  Analysis of the momentum LMS algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  P. P. Vaidyanathan,et al.  Cosine-modulated FIR filter banks satisfying perfect reconstruction , 1992, IEEE Trans. Signal Process..

[12]  William A. Sethares,et al.  Weak convergence and local stability properties of fixed step size recursive algorithms , 1993, IEEE Trans. Inf. Theory.

[13]  Yong Ching Lim,et al.  The design of weighted minimax quadrature mirror filters , 1993, IEEE Trans. Signal Process..

[14]  Shing-Chow Chan,et al.  Perfect reconstruction modulated filter banks without cosine constraints , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  William A. Sethares,et al.  The covering problem and μ-dependent adaptive algorithms , 1994, IEEE Trans. Signal Process..

[16]  Truong Q. Nguyen Near-perfect-reconstruction pseudo-QMF banks , 1994, IEEE Trans. Signal Process..

[17]  Sanjit K. Mitra,et al.  A simple method for designing high-quality prototype filters for M-band pseudo QMF banks , 1995, IEEE Trans. Signal Process..

[18]  Andreas Antoniou,et al.  Efficient iterative design method for cosine-modulated QMF banks , 1996, IEEE Trans. Signal Process..

[19]  Mark J. T. Smith,et al.  New framework for modulated perfect reconstruction filter banks , 1996, IEEE Trans. Signal Process..

[20]  Truong Q. Nguyen,et al.  The theory and design of arbitrary-length cosine-modulated filter banks and wavelets, satisfying perfect reconstruction , 1996, IEEE Trans. Signal Process..