Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides.

We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties of these waveguides degrade with time, but that this degradation can be reversed by annealing the samples. A four wave mixing conversion efficiency of + 12 dB is demonstrated in a 320 Gbit/s serial optical waveform data sampling experiment in a 4 mm long photonic nanowire.

[1]  Karthik Narayanan,et al.  Optical nonlinearities in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[2]  E. Sleeckx,et al.  Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry , 2009 .

[3]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[4]  L. Gruner-Nielsen,et al.  Fiber optical trap deposition of carbon nanotubes on fiber end-faces in a modelocked laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[5]  Richard V. Penty,et al.  Two‐photon absorption and self‐phase modulation in InGaAsP/InP multi‐quantum‐well waveguides , 1991 .

[6]  Y. Vlasov,et al.  Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge. , 2011, Optics express.

[7]  Hao Hu,et al.  Optical Waveform Sampling and Error-Free Demultiplexing of 1.28 Tb/s Serial Data in a Nanoengineered Silicon Waveguide , 2011, Journal of Lightwave Technology.

[8]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[9]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[10]  Chuang‐Chuang Tsai,et al.  Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon , 1984 .

[11]  Sanja Zlatanovic,et al.  Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source , 2010 .

[12]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[13]  Yurii A. Vlasov,et al.  Supercontinuum generation in silicon photonic wires , 2007 .

[14]  S. Massar,et al.  On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. , 2011, Optics letters.

[15]  H. Kawashima,et al.  Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. , 2010, Optics express.

[16]  S. O’Leary,et al.  The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis , 1997 .

[17]  P. Dumon,et al.  Subnanometer Linewidth Uniformity in Silicon Nanophotonic Waveguide Devices Using CMOS Fabrication Technology , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  C Koos,et al.  Nonlinear silicon-on-insulator waveguides for all-optical signal processing. , 2007, Optics express.

[19]  Hao Hu,et al.  Ultra-high-speed wavelength conversion in a silicon photonic chip. , 2011, Optics express.

[20]  Michael Galili,et al.  Silicon based ultrafast optical waveform sampling , 2010, Photonics Europe.

[21]  Innokenty I. Novikov,et al.  Two-photon absorption in InGaAsP waveguides , 2003, Photonics Prague.

[22]  Michal Lipson,et al.  Continuous Wavelength Conversion of 40-Gb/s Data Over 100 nm Using a Dispersion-Engineered Silicon Waveguide , 2011, IEEE Photonics Technology Letters.

[23]  Fengnian Xia,et al.  Supercontinuum generation in silicon photonic wires , 2007, 2008 IEEE/LEOS Winter Topical Meeting Series.