Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides.
暂无分享,去创建一个
P Jeppesen | S Massar | M Galili | L K Oxenløwe | R Baets | H Ji | S. Massar | R. Baets | L. Oxenløwe | P. Jeppesen | M. Galili | G. Roelkens | M. Pu | H. Ji | G. Morthier | S. Selvaraja | B. Kuyken | S. Clemmen | H. Hu | H Hu | G Roelkens | G Morthier | B Kuyken | S Clemmen | S K Selvaraja | M Pu | P. Jeppesen | R. Baets | Hao Hu | G. Roelkens
[1] Karthik Narayanan,et al. Optical nonlinearities in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.
[2] E. Sleeckx,et al. Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry , 2009 .
[3] I. Day,et al. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .
[4] L. Gruner-Nielsen,et al. Fiber optical trap deposition of carbon nanotubes on fiber end-faces in a modelocked laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.
[5] Richard V. Penty,et al. Two‐photon absorption and self‐phase modulation in InGaAsP/InP multi‐quantum‐well waveguides , 1991 .
[6] Y. Vlasov,et al. Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge. , 2011, Optics express.
[7] Hao Hu,et al. Optical Waveform Sampling and Error-Free Demultiplexing of 1.28 Tb/s Serial Data in a Nanoengineered Silicon Waveguide , 2011, Journal of Lightwave Technology.
[8] M. Lipson,et al. Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.
[9] Yurii A. Vlasov,et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.
[10] Chuang‐Chuang Tsai,et al. Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon , 1984 .
[11] Sanja Zlatanovic,et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source , 2010 .
[12] D. Staebler,et al. Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .
[13] Yurii A. Vlasov,et al. Supercontinuum generation in silicon photonic wires , 2007 .
[14] S. Massar,et al. On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. , 2011, Optics letters.
[15] H. Kawashima,et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. , 2010, Optics express.
[16] S. O’Leary,et al. The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis , 1997 .
[17] P. Dumon,et al. Subnanometer Linewidth Uniformity in Silicon Nanophotonic Waveguide Devices Using CMOS Fabrication Technology , 2010, IEEE Journal of Selected Topics in Quantum Electronics.
[18] C Koos,et al. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. , 2007, Optics express.
[19] Hao Hu,et al. Ultra-high-speed wavelength conversion in a silicon photonic chip. , 2011, Optics express.
[20] Michael Galili,et al. Silicon based ultrafast optical waveform sampling , 2010, Photonics Europe.
[21] Innokenty I. Novikov,et al. Two-photon absorption in InGaAsP waveguides , 2003, Photonics Prague.
[22] Michal Lipson,et al. Continuous Wavelength Conversion of 40-Gb/s Data Over 100 nm Using a Dispersion-Engineered Silicon Waveguide , 2011, IEEE Photonics Technology Letters.
[23] Fengnian Xia,et al. Supercontinuum generation in silicon photonic wires , 2007, 2008 IEEE/LEOS Winter Topical Meeting Series.