Emergence : an algorithmic formulation 1

When the microequations of a dynamical system generate complex macrobehaviour, there can be an explanatory gap between the small-scale and large-scale descriptions of the same system. The microdynamics may be simple, but its relationship to the macrobehaviour may seem impenetrable. This phenomenon, known as emergence, poses problems for the nature of scientific understanding. How do we reconcile two radically different modes of description? Emergence is formulated using the powerful tools of algorithmic information and computational theory. This provides the ground for an extension and generalisation of the phenomenon. Mathematics itself is analysed as an emergent system, linking formalist notions of mathematics as a string manipulation game with the more abstract ideas and proofs that occupy mathematicians. A philosophical problem that has plagued emergence is whether the whole can be more than the sum of its parts. This possibility, known as strong emergence, manifests when emergent macrostructures introduce brand new causal dynamics into a system. A new perspective on this problem is gained by analysing strong emergence through algorithmic terms.

[1]  Timothy O’Connor,et al.  EMERGENT PROPERTIES , 2021 .

[2]  Reduction and Emergence in the Physical Sciences : Some Lessons from the Particle Physics and Condensed Matter Debate , 2006 .

[3]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[4]  Yaneer Bar-Yam,et al.  A mathematical theory of strong emergence using multiscale variety , 2004, Complex..

[5]  Mike Stannett,et al.  Computation and Hypercomputation , 2003, Minds and Machines.

[6]  Ales Kubík,et al.  Toward a Formalization of Emergence , 2002, Artif. Life.

[7]  J. Goldstein The Singular Nature of Emergent Levels: Suggestions for a Theory of Emergence , 2002 .

[8]  Toby Ord,et al.  Hypercomputation: computing more than the Turing machine , 2002, ArXiv.

[9]  G. J Chaitin,et al.  Meta-Mathematics and the Foundations of Mathematics , 2002 .

[10]  Melanie Remy,et al.  Wikipedia: The Free Encyclopedia200214Wikipedia: The Free Encyclopedia. 2001 – updated daily. Gratis http://www.wikipedia.com , 2002 .

[11]  Mark A. Bedau,et al.  Downward Causation and the Autonomy of Weak Emergence , 2002 .

[12]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[13]  Steven Johnson,et al.  Emergence: The Connected Lives of Ants, Brains, Cities, and Software , 2001 .

[14]  J. Rennard Introduction to Cellular automata , 2001 .

[15]  John R. Steel,et al.  Does Mathematics Need New Axioms? , 2000, Bulletin of Symbolic Logic.

[16]  Lynn Arthur Steen,et al.  A Joyful Passion for Proofs: The Pied Piper of Mathematics , 2000 .

[17]  C. Adami,et al.  Physical complexity of symbolic sequences , 1996, adap-org/9605002.

[18]  C. Emmeche,et al.  Levels, Emergence and Three Versions of Downward Causation , 2000 .

[19]  Jaegwon Kim,et al.  Making Sense of Emergence , 1999 .

[20]  Moshe Sipper,et al.  Design, Observation, Surprise! A Test of Emergence , 1999, Artificial Life.

[21]  Michael Silberstein,et al.  The Search for Ontological Emergence , 1999 .

[22]  Achim Stephan,et al.  Varieties of Emergentism , 1999 .

[23]  Jorma Rissanen,et al.  Hypothesis Selection and Testing by the MDL Principle , 1999, Comput. J..

[24]  P. Thompson The nature and role of intuition in mathematical epistemology , 1998 .

[25]  J. Jost ON THE NOTION OF COMPLEXITY , 1998 .

[26]  Paul Ernest Social Constructivism as a Philosophy of Mathematics , 1997 .

[27]  Gregory J. Chaitin,et al.  Information, Randomness & Incompleteness - Papers on Algorithmic Information Theory - Second Edition , 1997 .

[28]  T. Crane The Mechanical Mind: A Philosophical Introduction to Minds, Machines and Mental Representation , 1996 .

[29]  D. Chalmers The Conscious Mind , 1996 .

[30]  J. Robinson The role of heuristics in automated theorem proving , 1996 .

[31]  Cristian S. Calude,et al.  Strong Determinism vs. Computability , 1994, quant-ph/9412004.

[32]  Daniel C. Dennett,et al.  The Rediscovery of the Mind , 1992, Artif. Intell..

[33]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[34]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[35]  Jaegwon Kim,et al.  “Downward Causation” in Emergentism and Nonreductive Physicalism , 1992 .

[36]  Fred Richman,et al.  Intuitionism As Generalization , 1990 .

[37]  Ruth E. Davis Truth, deduction, and computation - logic and semantics for computer science , 1989, Principles of computer science series.

[38]  G. Chaitin Incompleteness theorems for random reals , 1987 .

[39]  Philip Kitcher,et al.  The nature of mathematical knowledge , 1985 .

[40]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[41]  G. Chaitin Gödel's theorem and information , 1982 .

[42]  P. Schwinberg,et al.  New Comparison of the Positron and Electron g Factors , 1981 .

[43]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[44]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[45]  G. Chaitin Randomness and Mathematical Proof , 1975 .

[46]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[47]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[48]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[49]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[50]  H. Weyl Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik , 1928 .

[51]  An intermediate logic , 1928 .

[52]  Gustav Bergmann,et al.  PHILOSOPHICAL STUDIES , 1927, Philosophy.

[53]  H. Weyl,et al.  Die heutige Erkenntnislage in der Mathematik , 1926 .

[54]  John McCarthy,et al.  A Basis for a Mathematical Theory of Computation , 1899 .