The three-dimensional generalized Hénon map: Bifurcations and attractors.
暂无分享,去创建一个
[1] D. Turaev,et al. Doubling of invariant curves and chaos in three-dimensional diffeomorphisms. , 2021, Chaos.
[2] Amanda E Hampton,et al. Anti-integrability for Three-Dimensional Quadratic Maps , 2021, SIAM J. Appl. Dyn. Syst..
[3] A S Gonchenko,et al. On scenarios of the onset of homoclinic attractors in three-dimensional non-orientable maps. , 2021, Chaos.
[4] A. Kazakov,et al. On discrete Lorenz-like attractors. , 2021, Chaos.
[5] Zhaosheng Feng,et al. Bifurcation analysis of the three-dimensional Hénon map , 2017 .
[6] S. Gonchenko,et al. Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps , 2015, 1510.02252.
[7] S. Gonchenko,et al. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors , 2015, 1509.00264.
[8] Xu Zhang,et al. Chaotic polynomial maps , 2015, Int. J. Bifurc. Chaos.
[9] Dmitry Turaev,et al. Simple Scenarios of Onset of Chaos in Three-Dimensional Maps , 2014, Int. J. Bifurc. Chaos.
[10] Leon Glass,et al. Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps , 2013 .
[11] C. Simó,et al. Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight , 2013 .
[12] Julien Clinton Sprott,et al. Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian , 2009 .
[13] James D. Meiss,et al. Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations , 2008, SIAM J. Appl. Dyn. Syst..
[14] J. Meiss,et al. Nilpotent normal form for divergence-free vector fields and volume-preserving maps , 2007, 0706.1575.
[15] Dmitry Turaev,et al. Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.
[16] I. I. Ovsyannikov,et al. CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.
[17] Hendrik Richter,et al. The Generalized HÉnon Maps: Examples for Higher-Dimensional Chaos , 2002, Int. J. Bifurc. Chaos.
[18] Dmitry Turaev,et al. An example of a wild strange attractor , 1998 .
[19] James D. Meiss,et al. Computing periodic orbits using the anti-integrable limit , 1998, chao-dyn/9802014.
[20] J. Meiss,et al. Quadratic volume preserving maps , 1997, chao-dyn/9706001.
[21] Robert S. MacKay,et al. Some flesh on the skeleton: The bifurcation structure of bimodal maps , 1987 .
[22] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[23] Robert L. Devaney,et al. Shift automorphisms in the Hénon mapping , 1979, Hamiltonian Dynamical Systems.
[24] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[25] J. Meiss,et al. Quadratic volume preserving maps: an extension of a result of Moser , 1999 .
[26] Jason A. C. Gallas,et al. Dissecting shrimps: results for some one-dimensional physical models , 1994 .
[27] Lennart Carleson,et al. The Dynamics of the Henon Map , 1991 .