Global, Exact Cosmic Microwave Background Data Analysis Using Gibbs Sampling

We describe an efficient and exact method that enables global Bayesian analysis of cosmic microwave background (CMB) data. The method reveals the joint posterior density (or likelihood for flat priors) of the power spectrum ${C}_{\ensuremath{\ell}}$ and the CMB signal. Foregrounds and instrumental parameters can be simultaneously inferred from the data. The method allows the specification of a wide range of foreground priors. We explicitly show how to propagate the non-Gaussian dependency structure of the ${C}_{\ensuremath{\ell}}$ posterior through to the posterior density of the parameters. If desired, the analysis can be coupled to theoretical (cosmological) priors and can yield the posterior density of cosmological parameter estimates directly from the time-ordered data. The method does not hinge on special assumptions about the survey geometry or noise properties, etc., It is based on a Monte Carlo approach and hence parallelizes trivially. No trace or determinant evaluations are necessary. The feasibility of this approach rests on the ability to solve the systems of linear equations which arise. These are of the same size and computational complexity as the map-making equations. We describe a preconditioned conjugate gradient technique that solves this problem and demonstrate in a numerical example that the computational time required for each Monte Carlo sample scales as ${n}_{p}^{3/2}$ with the number of pixels ${n}_{p}$. We use our method to analyze the data from the Differential Microwave Radiometer on the Cosmic Background Explorer and explore the non-Gaussian joint posterior density of the ${C}_{\ensuremath{\ell}}$ from the Differential Microwave Radiometer on the Cosmic Background Explorer in several projections.

[1]  Alexander S. Szalay,et al.  Fast Cosmic Microwave Background Analyses via Correlation Functions , 2001 .

[2]  S. Dodelson,et al.  Cosmic Microwave Background Anisotropies , 2001, astro-ph/0110414.

[3]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[4]  Ricardo Genova-Santos,et al.  The cosmic microwave background power spectrum out to ℓ= 1400 measured by the Very Small Array , 2003 .

[5]  O. Lahav,et al.  Wiener Reconstruction of The Large Scale Structure , 1994, astro-ph/9410080.

[6]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[7]  K. Gorski Cosmic microwave background anisotropy in the COBE DMR 4-year sky maps , 1997 .

[8]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[9]  The Statistical Significance of the Low CMB Mulitipoles , 2003, astro-ph/0306431.

[10]  P. A. R. Ade,et al.  Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of Boomerang Observations , 2002 .

[11]  E. L. Wright,et al.  Power Spectrum of Primordial Inhomogeneity Determined from the FOUR-Year COBE DMR Sky Maps , 1996, astro-ph/9601063.

[12]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[13]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[14]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[15]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[16]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[17]  Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology , 1998, astro-ph/9808292.

[18]  J. E. Carlstrom,et al.  Degree Angular Scale Interferometer First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum , 2001 .

[19]  J. R. Bond,et al.  Radical Compression of Cosmic Microwave Background Data , 2000 .

[20]  J. Richard Bond,et al.  Computing challenges of the cosmic microwave background , 1999, Comput. Sci. Eng..

[21]  P. A. R. Ade,et al.  Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the Cosmic Microwave Background from Two New Analyses of BOOMERANG Observations , 2002, astro-ph/0212229.

[22]  A. Banday,et al.  Power Spectrum of Primordial Inhomogeneity Determined from the 4-Year COBE 1 DMR Sky Maps , 1996 .

[23]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[24]  Fast, exact CMB power spectrum estimation for a certain class of observational strategies , 2001, astro-ph/0106515.

[25]  G. Efstathiou The statistical significance of the low cosmic microwave background mulitipoles , 2003 .

[26]  Saleem Zaroubi,et al.  Wiener filtering of the COBE Differential Microwave Radiometer data , 1994 .

[27]  Ue-Li Pen Fast power spectrum estimation , 2003 .

[28]  M. R. Nolta,et al.  A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from l = 100 to 400 , 1999, astro-ph/9906421.

[29]  William H. Press,et al.  Numerical recipes , 1990 .

[30]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[31]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[32]  David N. Spergel,et al.  An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.

[33]  Joseph Silk,et al.  The Wiener-Filtered COBE DMR Data and Predictions for the Tenerife Experiment , 1995 .

[34]  J. Silk,et al.  Cosmic microwave background anisotropy , 1986, Nature.

[35]  J. E. Carlstrom,et al.  FIRST INTRINSIC ANISOTROPY OBSERVATIONS WITH THE COSMIC BACKGROUND IMAGER , 2001 .

[36]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[37]  C. H. Anderson,et al.  Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background , 2002, astro-ph/0209560.