Meshing highly regular structures: the case of super carbon nanotubes of arbitrary order
暂无分享,去创建一个
[1] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[2] C. Bayreuther,et al. Mehrskalenmodelle in der Festkörpermechanik und Kopplung von Mehrgittermethoden mit Homogenisierungsverfahren , 2005 .
[3] Reinhard Diestel,et al. Graph Theory , 1997 .
[4] Robert D. Falgout,et al. Coarse-Grid Selection for Parallel Algebraic Multigrid , 1998, IRREGULAR.
[5] K. Koohestani,et al. Exploitation of symmetry in graphs with applications to finite and boundary elements analysis , 2012 .
[6] Alphose Zingoni,et al. Group‐theoretic exploitations of symmetry in computational solid and structural mechanics , 2009 .
[7] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[8] Bin Liu,et al. The atomic-scale finite element method , 2004 .
[9] Jeffrey Butler,et al. Improving Coarsening and Interpolation for Algebraic Multigrid , 2006 .
[10] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[11] J. C. Wohlever. Some computational aspects of a group theoretic finite element approach to the buckling and postbuckling analyses of plates and shells-of-revolution , 1999 .
[12] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[13] Christian Wagner,et al. Multilevel ILU decomposition , 1999, Numerische Mathematik.
[14] K. Stüben. Algebraic multigrid (AMG): experiences and comparisons , 1983 .
[15] Van Emden Henson,et al. Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..
[16] X. Qiu,et al. A comprehensive study on the mechanical properties of super carbon nanotubes , 2008 .
[17] Jens Wackerfuß,et al. Molecular mechanics in the context of the finite element method , 2009 .
[18] Krishnan Suresh,et al. Automated symmetry exploitation in engineering analysis , 2006, Engineering with Computers.
[19] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[20] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[21] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[22] G. Hahn,et al. Graph homomorphisms: structure and symmetry , 1997 .
[23] A. Kaveh,et al. Block diagonalization of Laplacian matrices of symmetric graphs via group theory , 2007 .
[24] Donald J. Miller. The Categorical Product of Graphs , 1968, Canadian Journal of Mathematics.
[25] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[26] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[27] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[28] S. Pellegrino,et al. AN INTRODUCTION TO THE ANALYSIS OF SYMMETRIC STRUCTURES , 1999 .
[29] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[30] W. Imrich,et al. Handbook of Product Graphs, Second Edition , 2011 .
[31] Ali Kaveh,et al. An efficient analysis of repetitive structures generated by graph products , 2010 .
[32] Ado Jorio,et al. Geometric and electronic structure of carbon nanotube networks: ‘super’-carbon nanotubes , 2006 .
[33] Neil Genzlinger. A. and Q , 2006 .
[34] V. E. Henson,et al. BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .
[35] E. Vanden-Eijnden,et al. The Heterogeneous Multiscale Method: A Review , 2007 .
[36] Xiong Zhang,et al. Equivalent parameter study of the mechanical properties of super carbon nanotubes , 2007 .
[37] Christian Miehe,et al. Multilevel FEM for Heterogeneous Structures: From Homogenization to Multigrid Solvers , 2006 .
[38] Ali Kaveh,et al. Graph products for configuration processing of space structures , 2008 .
[39] Wolfgang A. Wall,et al. Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods , 2007 .