Arikan meets Shannon: Polar codes with near-optimal convergence to channel capacity

Let W be a binary-input memoryless symmetric (BMS) channel with Shannon capacity I(W) and fix any α > 0. We construct, for any sufficiently small δ > 0, binary linear codes of block length O(1/δ2+α) and rate I(W)−δ that enable reliable communication on W with quasi-linear time encoding and decoding. Shannon’s noisy coding theorem established the existence of such codes (without efficient constructions or decoding) with block length O(1/δ2). This quadratic dependence on the gap δ to capacity is known to be the best possible. Our result thus yields a constructive version of Shannon’s theorem with near-optimal convergence to capacity as a function of the block length. This resolves a central theoretical challenge associated with the attainment of Shannon capacity. Previously such a result was only known for the binary erasure channel. Our codes are a variant of Arikan’s polar codes based on multiple carefully constructed local kernels, one for each intermediate channel that arises in the decoding. A crucial ingredient in the analysis is a strong converse of the noisy coding theorem when communicating using random linear codes on arbitrary BMS channels. Our converse theorem shows extreme unpredictability of even a single message bit for random coding at rates slightly above capacity.

[1]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[2]  Rüdiger L. Urbanke,et al.  Polar Codes: Characterization of Exponent, Bounds, and Constructions , 2010, IEEE Transactions on Information Theory.

[3]  Jean-Claude Belfiore,et al.  Multi-kernel construction of polar codes , 2016, 2017 IEEE International Conference on Communications Workshops (ICC Workshops).

[4]  Hsin-Po Wang,et al.  Polar-like Codes and Asymptotic Tradeoff among Block Length, Code Rate, and Error Probability , 2018, ArXiv.

[5]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[6]  Johannes B. Huber,et al.  Information Combining , 2006, Found. Trends Commun. Inf. Theory.

[7]  Meir Feder,et al.  The Random Coding Bound Is Tight for the Average Linear Code or Lattice , 2013, IEEE Transactions on Information Theory.

[8]  Simon Litsyn,et al.  Mixed-Kernels Constructions of Polar Codes , 2016, IEEE Journal on Selected Areas in Communications.

[9]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[10]  Hsin-Po Wang,et al.  Polar Codes' Simplicity, Random Codes' Durability , 2019, ArXiv.

[11]  Devdatt P. Dubhashi,et al.  Balls and Bins: A Study in Negative Dependence , 1996 .

[12]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[13]  Valerio Bioglio,et al.  Multi-kernel polar codes: Proof of polarization and error exponents , 2017, 2017 IEEE Information Theory Workshop (ITW).

[14]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[15]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[16]  Rüdiger L. Urbanke,et al.  Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[17]  G. D. J. Forney,et al.  On exponential error bounds for random codes on the BSC , 2001 .

[18]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[19]  V. Strassen,et al.  Asymptotic Estimates in Shannon ’ s Information Theory , 2009 .

[20]  Arman Fazeli,et al.  Explicit Polar Codes with Small Scaling Exponent , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[21]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[22]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[23]  David Burshtein,et al.  Improved Bounds on the Finite Length Scaling of Polar Codes , 2013, IEEE Transactions on Information Theory.

[24]  Vera Miloslavskaya,et al.  Design of binary polar codes with arbitrary kernel , 2012, 2012 IEEE Information Theory Workshop.

[25]  Sever S Dragomir,et al.  A Refinement and a divided difference reverse of Jensen's inequality with applications , 2016 .

[26]  Arman Fazeli,et al.  Binary Linear Codes with Optimal Scaling and Quasi-Linear Complexity , 2017, ArXiv.

[27]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[28]  Rüdiger L. Urbanke,et al.  Finite-Length Scaling for Polar Codes , 2013, IEEE Transactions on Information Theory.

[29]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[30]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[31]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[32]  Venkatesan Guruswami,et al.  Polar Codes: Speed of Polarization and Polynomial Gap to Capacity , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[33]  Arman Fazeli,et al.  On the scaling exponent of binary polarization kernels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[35]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[36]  Toshiyuki Tanaka,et al.  Source and Channel Polarization Over Finite Fields and Reed–Solomon Matrices , 2012, IEEE Transactions on Information Theory.

[37]  Alexander Barg,et al.  Polar codes using dynamic kernels , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[38]  Venkatesan Guruswami,et al.  General strong polarization , 2018, Electron. Colloquium Comput. Complex..

[39]  Albert Guillén i Fàbregas,et al.  Extremes of random coding error exponents , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[40]  Rüdiger L. Urbanke,et al.  Near-optimal finite-length scaling for polar codes over large alphabets , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).