Neutral particle release from Europa’s surface

Abstract In this paper, we look at space weathering processes on the icy surface of Jupiter’s moon Europa. The heavy energetic ions of the jovian plasma (H + , O + , S + , C + ) can erode the surface of Europa via ion sputtering (IS), ejecting up to 1000 H 2 O molecules per ion. UV photons impinging the Europa’s surface can also result in neutral atom release via photon-stimulated desorption (PSD) and chemical change (photolysis). In this work, we study the efficiency of the IS and PSD processes for ejecting water molecules, simulating the resulting neutral H 2 O density. We also estimate the contribution to the total neutral atom release by the Ion Backscattering (IBS) process. Moreover, we estimate the possibility of detecting the sputtered high energy atoms, in order to distinguish the action of the IS process from other surface release mechanisms. Our main results are: (1) The most significant sputtered-particle flux and the largest contribution to the neutral H 2 O density come from the incident S + ions; (2) the H 2 O density produced via PSD is lower than that due to sputtering by ∼1.5 orders of magnitude; (3) in the energy range below 1 keV, the IBS can be considered negligible for the production of neutrals, whereas in the higher energy range it becomes the dominant neutral emission mechanism; (4) the total sputtering rate for Europa is 2.0 × 10 27  H 2 O s −1 ; and (5) the fraction of escaping H 2 O via IS is 22% of the total sputtered population, while the escape fraction for H 2 O produced by PSD is 30% of the total PSD population. Since the PSD exosphere is lower than the IS one, the major agent for Europa’s surface total net erosion is IS on both the non-illuminated and illuminated side. Lastly, the exospheric neutral density, estimated from the Galileo electron density measurements appears to be higher than that calculated for H 2 O alone; this favors the scenario of the presence of O 2 produced by radiolysis and photolysis.

[1]  J. Ziegler,et al.  The stopping of ions in compounds , 1988 .

[2]  R. E. Johnson,et al.  Photodesorption from low-temperature water ice in interstellar and circumsolar grains , 1995, Nature.

[3]  Robert W. Carlson,et al.  Electron bombardment of Europa , 2001 .

[4]  A. Sternberg,et al.  Cosmic-ray-induced photodestruction of interstellar molecules in dense clouds , 1987 .

[5]  A. Milillo,et al.  Space weathering on near-Earth objects investigated by neutral-particle detection , 2008, 0811.4727.

[6]  B. Mauk,et al.  Ion sputtering and surface erosion at Europa , 1998 .

[7]  R. E. Johnson,et al.  The ion environment near Europa and its role in surface energetics , 2002 .

[8]  Robert E. Johnson,et al.  The effect of magnetospheric ion bombardment on the reflectance of Europa's surface , 1992 .

[9]  Low energy high angular resolution neutral atom detection by means of micro‐shuttering techniques: the BepiColombo SERENA/ELENA sensor , 2008, 0811.4722.

[10]  D. T. Thompson,et al.  Europa's phase curve: Implications for surface structure , 1991 .

[11]  A. Bhardwaj,et al.  Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space , 2009, 1012.2972.

[12]  J. Cooper,et al.  The spatial morphology of Europa's near-surface O2 atmosphere , 2007 .

[13]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[14]  G. Cremonese,et al.  Release of neutral sodium atoms from the surface of Mercury induced by meteoroid impacts , 2005 .

[15]  J. Cooper,et al.  Surface-bounded atmosphere of Europa , 2005 .

[16]  X.-L. Zhou,et al.  Photochemistry at adsorbate/metal interfaces , 1991 .

[17]  W. Augustyniak,et al.  Electronic sputtering of low temperature molecular solids , 1984 .

[18]  Thomas M. Orlando,et al.  The chemical nature of Europa surface material and the relation to a subsurface ocean , 2005 .

[19]  T. McCord,et al.  Analysis of Voyager images of Europa: plasma bombardment , 1988 .

[20]  P. Geissler,et al.  Can redistribution of material by sputtering explain the hemispheric dichotomy of europa , 2003 .

[21]  B. Hapke On the sputter alteration of regoliths of outer solar system bodies , 1986 .

[22]  A. Bar-Nun,et al.  Europan surface phenomena , 1985 .

[23]  P. Wurz,et al.  Asteroid exosphere: A simulation for the ROSETTA flyby targets (2867) Steins and (21) Lutetia , 2008 .

[24]  A. Brandeker,et al.  Survival of icy grains in debris discs. The role of photosputtering , 2007, 0709.0811.

[25]  Robert E. Johnson,et al.  Sputtering of ices: a review , 1986 .

[26]  Alexander V. Krivov,et al.  Impact-generated dust clouds surrounding the Galilean moons , 2003 .

[27]  M. Kawasaki,et al.  TRANSLATIONAL AND ROTATIONAL ENERGY MEASUREMENTS OF PHOTODESORBED WATER MOLECULES IN THEIR VIBRATIONAL GROUND STATE FROM AMORPHOUS SOLID WATER , 2009 .

[28]  Robert E. Johnson Sodium at Europa , 2000 .

[29]  Robert E. Johnson,et al.  Trace constituents of Europa's atmosphere , 2009 .

[30]  Theodore E. Madey,et al.  Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon , 1998 .

[31]  O. L. Kuskov,et al.  Internal structure of Europa and Callisto , 2005 .

[32]  Robert E. Johnson,et al.  Ion-induced chemistry in condensed gas solids , 1983 .

[33]  Robert E. Johnson Sputtering and Desorption from Icy Surfaces , 1998 .

[34]  Robert E. Johnson,et al.  Magnetospheric ion bombardment profiles of satellites - Europa and Dione , 1989 .

[35]  Helmut Lammer,et al.  Monte-Carlo simulation of Mercury's exosphere , 2003 .

[36]  Amanda R. Hendrix,et al.  Cassini UVIS observations of Europa's oxygen atmosphere and torus , 2005 .

[37]  Wing-Huen Ip,et al.  Europa's Oxygen Exosphere and Its Magnetospheric Interaction , 1996 .

[38]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[39]  Mark J. Cintala,et al.  Impact‐induced thermal effects in the lunar and Mercurian regoliths , 1992 .

[40]  Michael E. Brown,et al.  Europa's Sodium Atmosphere: An Ocean Source? , 2002 .

[41]  Helmut Lammer,et al.  Surface-Exosphere-Magnetosphere System Of Mercury , 2005 .

[42]  R. Clark,et al.  Saturn's satellites: Nuar-infrared spectrophotometry (0.6–2.5 μm) of the leading and trailing sides and compositional implications , 1984 .

[43]  F. Rocard,et al.  Erosion of ices: Physical and astrophysical discussion , 1986 .

[44]  R. E. Johnson,et al.  The production of oxidants in Europa's surface. , 2003, Astrobiology.

[45]  R. E. Johnson,et al.  Erosion of galilean satellite surfaces by jovian magnetosphere particles. , 1981, Science.

[46]  S. Krimigis,et al.  Composition of nonthermal ions in the Jovian magnetosphere , 1981 .

[47]  F. Flasar,et al.  The ionosphere of Europa from Galileo radio occultations. , 1997, Science.

[48]  A. Milillo,et al.  Numerical and analytical model of Mercury's exosphere: Dependence on surface and external conditions , 2007 .

[49]  François Leblanc,et al.  Mercury's sodium exosphere , 2003 .

[50]  M. Combi,et al.  A General Model for Io's Neutral Gas Clouds. II. Application to the Sodium Cloud , 1988 .

[51]  J. Schou,et al.  Sputtering of water ice surfaces and the production of extended neutral atmospheres , 1995 .

[52]  G. Strazzulla Chemistry of Ice Induced by Bombardment with Energetic Charged Particles , 1998 .

[53]  R. Baragiola,et al.  Sputtering of ice by low-energy ions , 2008 .

[54]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[55]  U. Rohner,et al.  The lunar exosphere: The sputtering contribution , 2007 .

[56]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[57]  Thomas M. Orlando,et al.  Far-out surface science: radiation-induced surface processes in the solar system , 2002 .

[58]  R. Carlson Photo-sputtering of ice and hydrogen around Saturn's rings , 1980, Nature.

[59]  K. R. Farmer,et al.  Ion-induced molecular ejection from D_2O ice , 1984 .

[60]  J. Poate,et al.  On the contribution of water products from Galilean satellites to the Jovian magnetosphere , 1978 .

[61]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[62]  W. Ip,et al.  Energetic ion sputtering effects at Ganymede , 1997 .

[63]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[64]  Robert T. Pappalardo,et al.  Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations , 2008 .

[65]  G. Leto,et al.  Implantation of carbon and nitrogen ions in water ice , 2003 .

[66]  T. Madey,et al.  Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere , 1999, Nature.

[67]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[68]  Kazushi Asamura,et al.  Solar wind proton reflection at the lunar surface: Low energy ion measurement by MAP‐PACE onboard SELENE (KAGUYA) , 2008 .

[69]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[70]  Robert E. Johnson,et al.  Monte Carlo model of sputtering and other ejection processes within a regolith , 2005 .

[71]  D. J. Oostra,et al.  Reactive sputtering of simple condensed gases by kev ions III: Kinetic energy distributions , 1984 .

[72]  T. Madey,et al.  Electron‐ and photon‐stimulated desorption of K from ice surfaces , 2001 .

[73]  J. Spencer Thermal segregation of water ice on the Galilean satellites , 1987 .

[74]  Rosemary M. Killen,et al.  Origins of Europa Na cloud and torus , 2005 .

[75]  Robert E. Johnson,et al.  Application of laboratory data to the sputtering of a planetary regolith , 1989 .

[76]  Robert E. Johnson,et al.  Sputtering of solid SO2 , 1984 .

[77]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[78]  E. Möbius,et al.  Lunar backscatter and neutralization of the solar wind: First observations of neutral atoms from the Moon , 2009 .

[79]  O. Witasse,et al.  Sodium recycling at Europa: what do we learn from the sodium cloud variability? , 2007 .

[80]  C. de Bergh,et al.  Solar system ices , 1998 .

[81]  H. Roosendaal,et al.  Surface disruption as an observable factor in the energy distribution of sputtered particles , 1982 .

[82]  W. O. Hofer,et al.  Angular, energy, and mass distribution of sputtered particles , 1991 .

[83]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[84]  J. Schou,et al.  Sputtering of water ice , 2003 .

[85]  Kevin B. Jones,et al.  Large Impact Features on Europa: Results of the Galileo Nominal Mission , 1998 .

[86]  T. Johnson,et al.  Effects of Io ejecta on Europa , 1981 .