MCMC Algorithms for Posteriors on Matrix Spaces
暂无分享,去创建一个
[1] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[2] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[3] Abel Rodriguez,et al. Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data , 2010, Journal of the American Statistical Association.
[4] R. Tweedie,et al. Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.
[5] Mario Ullrich,et al. Positivity of hit-and-run and related algorithms , 2012, 1212.4512.
[6] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[7] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[8] Michalis K. Titsias,et al. Scalable inference for a full multivariate stochastic volatility model , 2015, Journal of Econometrics.
[9] Alex Lenkoski,et al. A direct sampler for G‐Wishart variates , 2013, 1304.1350.
[10] S. Geisser,et al. Posterior Distributions for Multivariate Normal Parameters , 1963 .
[11] M. Wand,et al. Simple Marginally Noninformative Prior Distributions for Covariance Matrices , 2013 .
[12] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[13] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[14] J. K. Hunter,et al. Measure Theory , 2007 .
[15] A. Roverato. Hyper Inverse Wishart Distribution for Non-decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models , 2002 .
[16] A. Zaslavsky,et al. Domain-Level Covariance Analysis for Multilevel Survey Data With Structured Nonresponse , 2008 .
[17] Xiao-Li Meng,et al. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .
[18] K. Kamatani,et al. Ergodicity of Markov chain Monte Carlo with reversible proposal , 2016, Journal of Applied Probability.
[19] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[20] Y. Chikuse. Statistics on special manifolds , 2003 .
[21] Brigitte Maier,et al. Fundamentals Of Differential Geometry , 2016 .
[22] O. Barndorff-Nielsen,et al. Positive-definite matrix processes of finite variation , 2007 .
[23] James M. Dickey,et al. Matricvariate Generalizations of the Multivariate $t$ Distribution and the Inverted Multivariate $t$ Distribution , 1967 .
[24] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[25] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[26] Laurence A. Wolsey,et al. Production Planning by Mixed Integer Programming (Springer Series in Operations Research and Financial Engineering) , 2006 .
[27] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[28] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[29] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .
[30] A. P. Dawid,et al. Regression and Classification Using Gaussian Process Priors , 2009 .
[31] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[32] Hao Wang,et al. Efficient Gaussian graphical model determination under G-Wishart prior distributions , 2012 .
[33] M. Meerschaert. Regular Variation in R k , 1988 .