Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants

[1]  Qiong Zhang,et al.  Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1 , 2019, The ISME Journal.

[2]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[3]  C. Dupont,et al.  Patterns of thaumarchaeal gene expression in culture and diverse marine environments , 2017, bioRxiv.

[4]  David A. C. Beck,et al.  Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations , 2017, The ISME Journal.

[5]  T. Limpiyakorn,et al.  Contribution of ammonia-oxidizing archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors , 2018, Environmental Science and Pollution Research.

[6]  U. Ryde,et al.  Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase. , 2018, Angewandte Chemie.

[7]  J. Prosser,et al.  Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil , 2017, Environmental microbiology.

[8]  E. Khan,et al.  Seasonal variation and ex-situ nitrification activity of ammonia oxidizing archaea in biofilm based wastewater treatment processes. , 2017, Bioresource technology.

[9]  M. Wagner,et al.  Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle , 2017, Nature.

[10]  M. Wagner,et al.  Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system , 2017, The ISME Journal.

[11]  C. Schleper,et al.  A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. , 2016, Environmental microbiology reports.

[12]  C. Schleper,et al.  Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers , 2016, Proceedings of the National Academy of Sciences.

[13]  Stefan Schouten,et al.  Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea , 2016, Proceedings of the National Academy of Sciences.

[14]  H. Albrechtsen,et al.  Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production. , 2016, Water research.

[15]  M. Wagner,et al.  Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis , 2016, Environmental science & technology.

[16]  K. Wilkinson,et al.  When are metal complexes bioavailable , 2016 .

[17]  Yong Liu,et al.  Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States , 2016, Microbial Ecology.

[18]  P. Nielsen,et al.  Complete nitrification by a single microorganism , 2015, Nature.

[19]  M. Wagner,et al.  Complete nitrification by Nitrospira bacteria , 2015, Nature.

[20]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[21]  H. Whitby,et al.  Competition between copper and iron for humic ligands in estuarine waters , 2015 .

[22]  Jinping Tian,et al.  Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China , 2015, Applied Microbiology and Biotechnology.

[23]  M. Saito,et al.  Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean , 2015, Proceedings of the National Academy of Sciences.

[24]  R. McKay,et al.  Abundance and Diversity of Ammonia-Oxidizing Archaea and Bacteria in Sediments of Trophic End Members of the Laurentian Great Lakes, Erie and Superior , 2014, PloS one.

[25]  K. Bruland,et al.  Controls of Trace Metals in Seawater , 2013 .

[26]  D. Stahl,et al.  Copper requirements of the ammonia‐oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment , 2013 .

[27]  F. Morel,et al.  Preparation and chemistry of the artificial algal culture medium aquil , 2013 .

[28]  M. Stieglmeier,et al.  Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. , 2013, FEMS microbiology letters.

[29]  Yongzhen Peng,et al.  Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. , 2013, Bioresource technology.

[30]  J. Prosser,et al.  Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. , 2012, Trends in microbiology.

[31]  D. Stahl,et al.  Physiology and diversity of ammonia-oxidizing archaea. , 2012, Annual review of microbiology.

[32]  Stefan Schouten,et al.  Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant , 2012, Environmental microbiology.

[33]  R. Hatzenpichler Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea , 2012, Applied and Environmental Microbiology.

[34]  J. Moffett,et al.  Chelator‐induced inhibition of copper metalloenzymes in denitrifying bacteria , 2012 .

[35]  J. S. Sinninghe Damsté,et al.  Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil , 2011, Applied and Environmental Microbiology.

[36]  Andreas Richter,et al.  Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers , 2011, Proceedings of the National Academy of Sciences.

[37]  Dan Wei,et al.  Impacts of Organic and Inorganic Fertilizers on Nitrification in a Cold Climate Soil are Linked to the Bacterial Ammonia Oxidizer Community , 2011, Microbial Ecology.

[38]  C. Polprasert,et al.  Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. , 2011, Bioresource technology.

[39]  J. Prosser,et al.  Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms , 2011, The ISME Journal.

[40]  Patricia P. Chan,et al.  Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea , 2010, Proceedings of the National Academy of Sciences.

[41]  D. Stahl,et al.  Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria , 2009, Nature.

[42]  C. Criddle,et al.  Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. , 2009, Environmental microbiology.

[43]  R. Conrad,et al.  Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. , 2009, Environmental microbiology.

[44]  Rujun Yang,et al.  Metal complexation by humic substances in seawater. , 2009, Environmental science & technology.

[45]  M. Schloter,et al.  Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. , 2009, Environmental microbiology.

[46]  C. Dupont,et al.  Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea , 2007 .

[47]  T. Tatusova,et al.  NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2006, Nucleic Acids Research.

[48]  T. Urich,et al.  Archaea predominate among ammonia-oxidizing prokaryotes in soils , 2006, Nature.

[49]  Marc Strous,et al.  Archaeal nitrification in the ocean , 2006, Proceedings of the National Academy of Sciences.

[50]  P. Persson,et al.  Complexation of copper(ll) in organic soils and in dissolved organic matter--EXAFS evidence for chelate ring structures. , 2006, Environmental science & technology.

[51]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[52]  F. Villa,et al.  Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. , 2006, Water research.

[53]  A. Rosenzweig,et al.  Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane , 2005, Nature.

[54]  H. Westerhoff,et al.  Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite‐sensitive transcription repressor , 2004, Molecular microbiology.

[55]  L. Sigg,et al.  Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers , 1996, Aquatic Sciences.

[56]  G. McCarty Modes of action of nitrification inhibitors , 1999, Biology and Fertility of Soils.

[57]  L. Kaplan,et al.  Chemical composition of biodegradable dissolved organic matter in streamwater , 1997 .

[58]  William D. Schecher,et al.  MINEQL+: A software environment for chemical equilibrium modeling , 1992 .

[59]  A. Klapwijk,et al.  Effect of copper on nitrification in activated sludge , 1981 .

[60]  R. Hites,et al.  Organic compounds in an industrial Wastewater: a case study of their environmental impact , 1978 .

[61]  C. Trotman,et al.  Inhibition of nitrification in the activated sludge process of sewage disposal. , 1966, The Journal of applied bacteriology.

[62]  D. D. Perrin Stability of Metal Complexes with Salicylic Acid and Related Substances , 1958, Nature.

[63]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .