Se p 20 03 Detector Description and Performance for the First Coincidence Observations between LIGO and GEO The LIGO Scientific Collaboration

For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.

[1]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[2]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[3]  E. al.,et al.  Analysis of first LIGO science data for stochastic gravitational waves , 2003, gr-qc/0312088.

[4]  Y. Hefetz,et al.  Grid-based simulation program for gravitational wave interferometers with realistically imperfect optics , 2003, astro-ph/0311413.

[5]  M. M. Casey,et al.  A report on the status of the GEO 600 gravitational wave detector , 2003 .

[6]  H. Grote,et al.  Calibration of GEO 600 for the S1 science run , 2003 .

[7]  E. al.,et al.  Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors , 2003, gr-qc/0308050.

[8]  Benno Willke,et al.  Mode-cleaning and injection optics of the gravitational-wave detector GEO600 , 2003 .

[9]  R. Abbott,et al.  Feedforward reduction of the microseism disturbance in a long-baseline interferometric gravitational-wave detector , 2002 .

[10]  D. Sigg,et al.  DETECTOR CHARACTERIZATION AND GLOBAL DIAGNOSTICS SYSTEM OF THE LASER INTERFEROMETER GRAVITATIONAL-WAVE OBSERVATORY (LIGO) , 2002 .

[11]  Carl Kesselman,et al.  GriPhyN and LIGO, building a virtual data Grid for gravitational wave scientists , 2002, Proceedings 11th IEEE International Symposium on High Performance Distributed Computing.

[12]  W. Kells,et al.  Lock acquisition of a gravitational-wave interferometer. , 2002, Optics letters.

[13]  Masaki Ando,et al.  Current status of TAMA , 2002 .

[14]  V. Quetschke,et al.  The GEO 600 laser system , 2002 .

[15]  M. M. Casey,et al.  The automatic alignment system of GEO 600 , 2002 .

[16]  R. Bork,et al.  THE LIGO SUSPENDED OPTIC DIGITAL CONTROL SYSTEM , 2001, physics/0110071.

[17]  N. Mavalvala,et al.  Readout and control of a power-recycled interferometric gravitational-wave antenna. , 2001, Applied optics.

[18]  A. Lazzarini,et al.  Precision alignment of the LIGO 4 km arms using the dual-frequency differential global positioning system , 2001 .

[19]  M. M. Casey,et al.  Computer monitoring and control of the GEO 600 gravitational wave detector , 2000 .

[20]  Rowan,et al.  Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors , 2000, Physical review letters.

[21]  Kenneth A. Strain,et al.  GEO 600 triple pendulum suspension system: Seismic isolation and control , 2000 .

[22]  Barry C. Barish,et al.  The Laser Interferometer Gravitational-Wave Observatory LIGO , 2000 .

[23]  J. K. Blackburn Laser Interferometer Gravitational Wave Observatory ( LIGO ) Data Analysis System , 2000 .

[24]  S. Klimenko,et al.  End to End Simulation Program for Gravitational-Wave Detectors , 2000 .

[25]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[26]  J. Camp,et al.  Optical contamination screening of materials with a high-finesse Fabry-Perot cavity resonated continuously at 1.06- microm wavelength in vacuum. , 1999, Applied optics.

[27]  D. Farrant,et al.  Fabrication and measurement of optics for the laser interferometer gravitational wave observatory. , 1999, Applied optics.

[28]  Benno Willke,et al.  EXPERIMENTAL DEMONSTRATION OF A SUSPENDED DUAL RECYCLING INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION , 1998 .

[29]  Peter Fritschel,et al.  Alignment of an interferometric gravitational wave detector. , 1998, Applied optics.

[30]  Sheila Rowan,et al.  Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica , 1998 .

[31]  Y. Levin Internal thermal noise in the LIGO test masses: A direct approach , 1997, gr-qc/9707013.

[32]  Rainer Weiss,et al.  Optics Development for LIGO , 1997 .

[33]  L. Sievers,et al.  A passive vibration isolation stack for LIGO: Design, modeling, and testing , 1996 .

[34]  M. Regehr,et al.  Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation. , 1995, Optics letters.

[35]  P. Saulson Fundamentals of Interferometric Gravitational Wave Detectors , 1994 .

[36]  Andreas Tünnermann,et al.  GEO 600. A 600 m Laser Interferometric Gravitational Wave Antenna , 1994 .

[37]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[38]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[39]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[40]  A. Lazzarini,et al.  The LIGO Data Analysis System , 1976 .