High-confinement SiGe low-loss waveguides for Si-based optoelectronics

The realization of two-dimensional SiGe/Si strained-layer low-loss waveguide (1.7 db/cm) is reported. The waveguide geometry is grown by selective epitaxy. It ensures loosened cutoff and critical thickness conditions. This geometry could be applied for waveguide active devices like light emitting diodes, photodetectors, or modulators. Because of the high cross section of the guided mode, these devices could be easily interfaced with optical fibers.

[1]  A. Vonsovici,et al.  Modulation doped SiGe-Si MQW for low-voltage high-speed modulators at 1.3 /spl mu/m , 1998 .

[2]  A. Koster,et al.  Room temperature photocurrent spectroscopy of SiGe/Si p-i-n photodiodes grown by selective epitaxy , 1998 .

[3]  M. Goryll,et al.  Selective epitaxial growth of strained SiGe/Si for optoelectronic devices , 1998 .

[4]  A. Vonsovici,et al.  The single-mode condition for semiconductor rib waveguides with large cross section , 1998 .

[5]  L. Vescan,et al.  Selective epitaxial growth of SiGe alloys—influence of growth parameters on film properties , 1994 .

[6]  Bernard L. Weiss,et al.  Characteristics of photoelastic waveguides in SiGe/Si heterostructures , 1997 .

[7]  Deeply-etched singlemode GeSi RIB waveguides for silicon-based optoelectronic integration , 1992 .

[8]  R. Soref,et al.  Optical waveguiding in Si/Si(1-x)Ge(x)/Si heterostructures , 1991 .

[9]  Jean-Marc Halbout,et al.  Silicon germanium optical waveguides with 0-5 dB/cm losses for singlemode fibre optic systems , 1992 .

[10]  R. Soref,et al.  Waveguided electro-optical intensity modulation in a Si/Ge/sub x/Si/sub 1-x//Si heterojunction bipolar transistor , 1990 .

[11]  N. Olsson,et al.  Ge0.6Si0.4 rib waveguide avalanche photodetectors for 1.3 μm operation , 1986 .

[12]  Eugene A. Fitzgerald,et al.  Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area , 1989 .

[13]  T. Stoica,et al.  Misfit dislocations in finite lateral size Si1-xGex films grown by selective epitaxy , 1993 .

[14]  R. Soref,et al.  Optical waveguiding in a single-crystal layer of germanium silicon grown on silicon. , 1990, Optics letters.

[15]  J. Schmidtchen,et al.  Passive integrated-optical waveguide structures by Ge-diffusion in silicon , 1994 .

[16]  Andre Delage,et al.  Optical properties of pseudomorphic Si/sub 1-x/Ge/sub x/ for Si-based waveguides at the /spl lambda/=1300-nm and 1550-nm telecommunications wavelength bands , 1998 .

[17]  M. Goryll,et al.  ELECTROLUMINESCENCE OF STRAINED SIGE/SI SELECTIVELY GROWN ABOVE THE CRITICAL THICKNESS FOR PLASTIC RELAXATION , 1998 .

[18]  E. Liu,et al.  Guided-wave Si1−xGex/Si wavelength demultiplexer based on multimode interference , 1998 .

[19]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[20]  J. Schmidtchen,et al.  Low loss optical rigde waveguides in a strained GeSi epitaxial layer grown on silicon , 1990 .

[21]  P. N. Robson,et al.  Rib waveguide theory by the spectral index method , 1990 .

[22]  S. Pogossian,et al.  Analysis of high-confinement SiGe/Si waveguides for silicon-based optoelectronics , 1999 .

[23]  Urs Fischer,et al.  Integrated optics in silicon and SiGe-heterostructures , 1996 .