Low overhead performance monitoring for shared infrastructures

[1]  Carlo Curino,et al.  Schism , 2010, Proc. VLDB Endow..

[2]  Dario Berzano,et al.  Monitoring of IaaS and scientific applications on the Cloud using the Elasticsearch ecosystem , 2015 .

[3]  Kishor S. Trivedi,et al.  Modeling and performance analysis of large scale IaaS Clouds , 2013, Future Gener. Comput. Syst..

[4]  Tania Cerquitelli,et al.  Discovering users with similar internet access performance through cluster analysis , 2016, Expert Syst. Appl..

[5]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[6]  Adam Silberstein,et al.  Benchmarking cloud serving systems with YCSB , 2010, SoCC '10.

[7]  Richard McDougall,et al.  Virtualization performance: perspectives and challenges ahead , 2010, OPSR.

[8]  João Paulo Magalhães,et al.  Adaptive Profiling for Root-Cause Analysis of Performance Anomalies in Web-Based Applications , 2011, 2011 IEEE 10th International Symposium on Network Computing and Applications.

[9]  Hai Jin,et al.  CCAP: A Cache Contention-Aware Virtual Machine Placement Approach for HPC Cloud , 2013, International Journal of Parallel Programming.

[10]  Mirsaeid Hosseini Shirvani,et al.  Server Consolidation Schemes in Cloud Computing Environment: A Review , 2016, European Journal of Engineering and Technology Research.

[11]  Odorico Machado Mendizabal,et al.  Reducing Monitoring Overhead in Virtualized Environments Through Feature Selection , 2018 .

[12]  Richard Taylor Interpretation of the Correlation Coefficient: A Basic Review , 1990 .

[13]  Vatche Ishakian,et al.  The rise of serverless computing , 2019, Commun. ACM.

[14]  Ram Krishnan,et al.  Time Series Forecasting of Cloud Data Center Workloads for Dynamic Resource Provisioning , 2015, J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl..

[15]  Ahmed E. Hassan,et al.  Automated Detection of Performance Regressions Using Regression Models on Clustered Performance Counters , 2015, ICPE.

[16]  Peter Willett,et al.  Comparison of Hierarchie Agglomerative Clustering Methods for Document Retrieval , 1989, Comput. J..

[17]  Tao Wang,et al.  Self-adaptive cloud monitoring with online anomaly detection , 2018, Future Gener. Comput. Syst..

[18]  Kevin Skadron,et al.  Bubble-up: Increasing utilization in modern warehouse scale computers via sensible co-locations , 2011, 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[19]  Farokh B. Bastani,et al.  Workload Estimation for Improving Resource Management Decisions in the Cloud , 2015, 2015 IEEE Twelfth International Symposium on Autonomous Decentralized Systems.

[20]  Raouf Boutaba,et al.  Cloud computing: state-of-the-art and research challenges , 2010, Journal of Internet Services and Applications.

[21]  Cristian Bucur,et al.  A comparison between several NoSQL databases with comments and notes , 2011, 2011 RoEduNet International Conference 10th Edition: Networking in Education and Research.

[22]  Odorico Machado Mendizabal,et al.  Monitoring and analysis of performance impact in virtualized environments , 2013 .

[23]  Fiona Fui-Hoon Nah,et al.  A study on tolerable waiting time: how long are Web users willing to wait? , 2004, AMCIS.

[24]  Calton Pu,et al.  Understanding Performance Interference of I/O Workload in Virtualized Cloud Environments , 2010, 2010 IEEE 3rd International Conference on Cloud Computing.

[25]  Oana Boncalo,et al.  Hardware support for performance measurements and energy estimation of OpenRISC processor , 2015, 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics.

[26]  Stefano Russo,et al.  Aging-related performance anomalies in the apache storm stream processing system , 2017, Future Gener. Comput. Syst..