Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa

: The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular signaling systems regulated by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate bacterial cell − cell communication via small-molecule natural products and control the production of a variety of virulence factors. The MvfR system is activated by and controls the biosynthesis of the quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis of these quinolones is catalyzed by the anthranilyl-CoA synthetase PqsA. To develop inhibitors of PqsA as novel potential antivirulence antibiotics, we report herein the design and synthesis of sulfonyladeonsine-based mimics of the anthranilyl-AMP reaction intermediate that is bound tightly by PqsA. Biochemical, microbiological, and pharmacological studies identi fi ed two potent PqsA inhibitors, anthranilyl-AMS ( 1 ) and

[1]  R. Hartmann,et al.  Dissecting the Multiple Roles of PqsE in Pseudomonas aeruginosa Virulence by Discovery of Small Tool Compounds. , 2016, ACS chemical biology.

[2]  H. Blackwell,et al.  Chemical Genetics Reveals Environment-Specific Roles for Quorum Sensing Circuits in Pseudomonas aeruginosa. , 2016, Cell chemical biology.

[3]  R. Hartmann,et al.  Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against Pseudomonas aeruginosa Infections. , 2016, ACS chemical biology.

[4]  N. Cady,et al.  Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression. , 2016, ACS chemical biology.

[5]  Derek S. Tan,et al.  Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents. , 2015, Biochemistry.

[6]  R. Hartmann,et al.  Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa. , 2015, European journal of medicinal chemistry.

[7]  Jennifer L. Martin,et al.  Targeting virulence not viability in the search for future antibacterials. , 2015, British journal of clinical pharmacology.

[8]  Derek S. Tan,et al.  General Platform for Systematic Quantitative Evaluation of Small-Molecule Permeability in Bacteria , 2014, ACS chemical biology.

[9]  A. Tzika,et al.  Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity , 2014, PLoS pathogens.

[10]  Michael P. Storz,et al.  From in vitro to in cellulo: structure-activity relationship of (2-nitrophenyl)methanol derivatives as inhibitors of PqsD in Pseudomonas aeruginosa. , 2014, Organic & biomolecular chemistry.

[11]  R. Hartmann,et al.  Optimization of anti-virulence PqsR antagonists regarding aqueous solubility and biological properties resulting in new insights in structure-activity relationships. , 2014, European journal of medicinal chemistry.

[12]  R. Hartmann,et al.  Benzamidobenzoic acids as potent PqsD inhibitors for the treatment of Pseudomonas aeruginosa infections. , 2014, European journal of medicinal chemistry.

[13]  R. Hartmann,et al.  Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. , 2014, Angewandte Chemie.

[14]  David R. Spring,et al.  Combating Multidrug-Resistant Bacteria: Current Strategies for the Discovery of Novel Antibacterials , 2013 .

[15]  L. Rahme,et al.  The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. , 2013, Chemistry & biology.

[16]  Michael P. Storz,et al.  Biochemical and biophysical analysis of a chiral PqsD inhibitor revealing tight-binding behavior and enantiomers with contrary thermodynamic signatures. , 2013, ACS chemical biology.

[17]  Rolf Müller,et al.  Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: an alternative approach for structure-based drug design. , 2013, Journal of medicinal chemistry.

[18]  R. Hartmann,et al.  Discovery and biophysical characterization of 2-amino-oxadiazoles as novel antagonists of PqsR, an important regulator of Pseudomonas aeruginosa virulence. , 2013, Journal of medicinal chemistry.

[19]  Michael P. Storz,et al.  Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking. , 2013, Journal of medicinal chemistry.

[20]  Derek S. Tan,et al.  Pharmacokinetic and In Vivo Efficacy Studies of the Mycobactin Biosynthesis Inhibitor Salicyl-AMS in Mice , 2013, Antimicrobial Agents and Chemotherapy.

[21]  P. Williams,et al.  Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR) , 2013, PLoS pathogens.

[22]  M. Federle,et al.  Exploiting Quorum Sensing To Confuse Bacterial Pathogens , 2013, Microbiology and Molecular Reviews.

[23]  J. Marshall Quorum sensing , 2013, Proceedings of the National Academy of Sciences.

[24]  Michael P. Storz,et al.  Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors. , 2012, Journal of the American Chemical Society.

[25]  M. Rohde,et al.  Biofilm formation by Pseudomonas aeruginosa in solid murine tumors - a novel model system. , 2012, Microbes and infection.

[26]  D. Spring,et al.  Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. , 2012, Trends in microbiology.

[27]  R. Hartmann,et al.  Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. , 2012, Chemistry & biology.

[28]  Karina B. Xavier,et al.  The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa , 2012, Microbiology and Molecular Reviews.

[29]  C. Aldrich,et al.  Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. , 2012, Chemistry & biology.

[30]  Derek S. Tan,et al.  Stable Analogues of OSB‐AMP: Potent Inhibitors of MenE, the o‐Succinylbenzoate‐CoA Synthetase from Bacterial Menaquinone Biosynthesis , 2012, Chembiochem : a European journal of chemical biology.

[31]  L. Rahme,et al.  A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes , 2011, PLoS pathogens.

[32]  R. Hartmann,et al.  Biosynthesis of 2‐Alkyl‐4(1H)‐Quinolones in Pseudomonas aeruginosa: Potential for Therapeutic Interference with Pathogenicity , 2011, Chembiochem : a European journal of chemical biology.

[33]  C. Aldrich,et al.  Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. , 2010, Biochemistry.

[34]  J. Blanchard,et al.  Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. , 2010, Biochemistry.

[35]  F. Lépine,et al.  HHQ and PQS, two Pseudomonas aeruginosa quorum‐sensing molecules, down‐regulate the innate immune responses through the nuclear factor‐κB pathway , 2010, Immunology.

[36]  Derek S. Tan,et al.  Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. , 2010, Journal of the American Chemical Society.

[37]  Rainer Fischer,et al.  Genetic determinants of Pseudomonas aeruginosa biofilm establishment. , 2010, Microbiology.

[38]  A. Gales,et al.  Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy , 2010, Expert review of anti-infective therapy.

[39]  A. Gulick Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. , 2009, ACS chemical biology.

[40]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[41]  Priyanka Verma,et al.  Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis , 2009, Nature chemical biology.

[42]  Derek S. Tan,et al.  Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. , 2008, Bioorganic & medicinal chemistry letters.

[43]  Chris Abell,et al.  Inhibition of Mycobacterium tuberculosis Pantothenate Synthetase by Analogues of the Reaction Intermediate , 2008, Chembiochem : a European journal of chemical biology.

[44]  A. Mesecar,et al.  Bacillus anthracis o-succinylbenzoyl-CoA synthetase: reaction kinetics and a novel inhibitor mimicking its reaction intermediate. , 2008, Biochemistry.

[45]  S. Diggle,et al.  Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. , 2008, Molecular bioSystems.

[46]  Derek S. Tan,et al.  Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation. , 2008, Chemistry & biology.

[47]  E. Pesci,et al.  Pseudomonas aeruginosa PqsA Is an Anthranilate-Coenzyme A Ligase , 2007, Journal of bacteriology.

[48]  R. Tompkins,et al.  Inhibitors of Pathogen Intercellular Signals as Selective Anti-Infective Compounds , 2007, PLoS pathogens.

[49]  Derek S. Tan,et al.  Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules. , 2007, Journal of the American Chemical Society.

[50]  Courtney C Aldrich,et al.  A mechanism-based aryl carrier protein/thiolation domain affinity probe. , 2007, Journal of the American Chemical Society.

[51]  Brian F. Pfleger,et al.  Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. , 2007, Biochemistry.

[52]  L. Rahme,et al.  MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR‐class regulatory protein, has dual ligands , 2006, Molecular microbiology.

[53]  R. Bonomo,et al.  Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[54]  C. Aldrich,et al.  Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. , 2006, Journal of medicinal chemistry.

[55]  M. Marahiel,et al.  Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis , 2006, The FEBS journal.

[56]  M. Murtiashaw,et al.  Synthesis of an N‐Acyl Sulfamate Analogue of Luciferyl‐AMP: A Stable and Potent Inhibitor of Firefly Luciferase. , 2005 .

[57]  M. Murtiashaw,et al.  Synthesis of an N-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase. , 2005, Bioorganic & medicinal chemistry letters.

[58]  M. Marahiel,et al.  Inhibition of the D‐alanine:D‐alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall , 2005, The FEBS journal.

[59]  Derek S. Tan,et al.  Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis , 2005, Nature chemical biology.

[60]  D. Beckett,et al.  Use of binding enthalpy to drive an allosteric transition. , 2005, Biochemistry.

[61]  Eric Déziel,et al.  The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing‐regulated genes are modulated without affecting lasRI, rhlRI or the production of N‐acyl‐ l‐homoserine lactones , 2004, Molecular microbiology.

[62]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Marahiel,et al.  Aminoacyl Adenylate Substrate Analogues for the Inhibition of Adenylation Domains of Nonribosomal Peptide Synthetases , 2003, Chembiochem : a European journal of chemical biology.

[64]  L. Rahme,et al.  A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. , 2003, Biochimica et biophysica acta.

[65]  N. Richards,et al.  Synthesis and characterization of an N-acylsulfonamide inhibitor of human asparagine synthetase. , 2003, Organic letters.

[66]  L. Rahme,et al.  A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Mekalanos,et al.  Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B. Iglewski,et al.  The Pseudomonas Quinolone Signal Regulates rhl Quorum Sensing in Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[69]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  C. Abstain Biofilm formation , 1998, Science.

[71]  H. Ueda,et al.  X-ray crystallographic conformational study of 5'-O-[N-(L-alanyl)-sulfamoyl]adenosine, a substrate analogue for alanyl-tRNA synthetase. , 1991, Biochimica et biophysica acta.

[72]  M. Ubukata,et al.  Ascamycin and dealanylascamycin, nucleoside antibiotics from Streptomyces sp. , 1984, The Journal of antibiotics.

[73]  J F Morrison,et al.  Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. , 1969, Biochimica et biophysica acta.

[74]  G. Lear,et al.  Structure of nucleocidin. III. revised structure , 1969 .

[75]  C. Waller,et al.  THE STRUCTURE OF NUCLEOCIDIN. I. , 1957 .

[76]  E. Pesci,et al.  Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). , 2004, FEMS microbiology letters.

[77]  J F Morrison,et al.  The kinetics of reversible tight-binding inhibition. , 1979, Methods in enzymology.