Iterative source-channel decoder using symbol-level extrinsic information

An iterative source-channel decoding scheme which exploits the source residual redundancies on symbol-basis is proposed. We first derive a modified BCJR algorithm based on the sectionalized code trellis for symbol decoding of the convolutional codes. This is used in conjunction with a softbit source decoder that computes the interpolative a posteriori probabilities of quantizer indexes. Simulation results indicate that our proposed scheme can achieve significant improvement over the conventional bit-level schemes.

[1]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[2]  Nariman Farvardin,et al.  On the performance and complexity of channel-optimized vector quantizers , 1991, IEEE Trans. Inf. Theory.

[3]  Peter Vary,et al.  Iterative Source-Channel Decoding: Improved System Design Using EXIT Charts , 2005, EURASIP J. Adv. Signal Process..

[4]  Amir K. Khandani,et al.  Symbol-based turbo codes , 1999, IEEE Communications Letters.

[5]  Shu Lin,et al.  Error Control Coding , 2004 .

[6]  N. Gortz On the iterative approximation of optimal joint source-channel decoding , 2001 .

[7]  Allen Gersho,et al.  Pseudo-Gray coding , 1990, IEEE Trans. Commun..

[8]  Peter Vary,et al.  Softbit speech decoding: a new approach to error concealment , 2001, IEEE Trans. Speech Audio Process..

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  Subbarayan Pasupathy,et al.  Reduced complexity symbol detectors with parallel structures , 1990, [Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and Exhibition.

[11]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[12]  Peter Vary,et al.  Iterative source-channel decoder using extrinsic information from softbit-source decoding , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[13]  Joachim Hagenauer,et al.  Source-controlled channel decoding , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[14]  Peter Vary,et al.  Source optimized channel codes (SOCCs) for parameter protection , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[15]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[16]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[17]  Norbert Gortz A generalized framework for iterative source-channel decoding , 2001 .

[18]  Shu Lin,et al.  MAP algorithms for decoding linear block codes based on sectionalized trellis diagrams , 2000, IEEE Trans. Commun..

[19]  David J. Miller,et al.  A sequence-based approximate MMSE decoder for source coding over noisy channels using discrete hidden Markov models , 1998, IEEE Trans. Commun..

[20]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.