On the Regularization of the Watershed Transform

Publisher Summary The watershed transform is one of the most popular judging from the great diversity of applications in which the method has been successfully applied. Since its introduction, various formulations of the watershed transform have appeared, providing elegant descriptions, revealing its properties, and resolving some difficulties. Since its origins, numerical image processing has developed along three main axes: (1) filtering theory and scale-space analysis, which corresponds to a robust framework for signal characterization, (2) segmentation for a precise identification of the shapes present in a scene, and (3) symbolic representations that seek to numerically restore a description as close as possible to our own vision. With the flat zones approach, the watershed transform is a fully automatic and parameter-free procedure. The most efficient computation method of the watershed transform is based on the hierarchical queues of pixels. This has two major benefits: first, it allows work on a narrow band near the lakes and second, it avoids a threshold by threshold processing.

[1]  Arnold W. M. Smeulders,et al.  The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Edward R. Dougherty,et al.  Mathematical Morphology in Image Processing , 1992 .

[3]  Philippe Salembier,et al.  Morphological tools for segmentation : connected filters and watersheds , 1997, Ann. des Télécommunications.

[4]  Gilles Bertrand,et al.  A parallel thinning algorithm for medial surfaces , 1995, Pattern Recognit. Lett..

[5]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[6]  Cristina Gomila,et al.  Mise en correspondance de partitions en vue du suivi d'objets , 2001 .

[7]  Serge Beucher,et al.  Watershed, Hierarchical Segmentation and Waterfall Algorithm , 1994, ISMM.

[8]  Fernand Meyer,et al.  Grey-Weighted, Ultrametric and Lexicographic Distances , 2005, ISMM.

[9]  Jean Paul Frédéric Serra Viscous Lattices , 2005, Journal of Mathematical Imaging and Vision.

[10]  Gilles Bertrand,et al.  Watersheds, mosaics, and the emergence paradigm , 2005, Discret. Appl. Math..

[11]  Philippe Salembier,et al.  Morphological multiscale segmentation for image coding , 1994, Signal Process..

[12]  Paul D. Gader Image Algebra and Morphological Image Processing , 1991 .

[13]  Gilles Bertrand,et al.  Enhanced computation method of topological smoothing on shared memory parallel machines , 2005, Journal of Mathematical Imaging and Vision.

[14]  Laurent Najman Morphologie Mathématique: de la Segmentation d'Images à l'Analyse Multivoque. (Mathematical Morphology: from Image Segmentation to Set-Valued Analysis) , 1994 .

[15]  Fernand Meyer,et al.  The Viscous Watershed Transform , 2005, Journal of Mathematical Imaging and Vision.

[16]  Jean Serra Connexions et segmentation d'image , 2003 .

[17]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[18]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[19]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[20]  Petros Maragos,et al.  Morphological Scale-Space Representation with Levelings , 1999, Scale-Space.

[21]  Etienne Decencière,et al.  Mathematical Morphology: 40 Years On, Proceedings of the 7th International Symposium on Mathematical Morphology, ISMM 2005, Paris, France, April 18-20, 2005 , 2005, ISMM.

[22]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[23]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[24]  Jesús Angulo Morphologie mathématique et indexation d'images couleur : application à la microscopie en biomédecine. (Mathematical morphology and image colour indexing : application in bio-medical microscopy) , 2003 .

[25]  Beatriz Marcotegui Segmentation de séquences d'images en vue du codage. (Segmentation of image sequences for coding) , 1996 .

[26]  Hugues Talbot,et al.  Mathematical Morphology: Proceedings of the VIth International Symposium: ISMM 2002 , 2002 .

[27]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[28]  Corinne Vachier Extraction de caractéristiques, segmentation d'image et morphologie mathématique , 1995 .

[29]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[30]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[31]  Marcel Worring,et al.  Watersnakes: Energy-Driven Watershed Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  G. Matheron Random Sets and Integral Geometry , 1976 .

[33]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Pascal Monasse,et al.  Scale-Space from a Level Lines Tree , 2000, J. Vis. Commun. Image Represent..

[35]  Corinne Vachier,et al.  Valuation of image extrema using alternating filters by reconstruction , 1995, Optics + Photonics.

[36]  Isabelle Bloch,et al.  Fuzzy morphisms between graphs , 2002, Fuzzy Sets Syst..

[37]  Serge Beucher Segmentation d'images et morphologie mathématique , 1990 .

[38]  Isabelle Bloch,et al.  Mathematical morphology and spatial relationships: quantitative, semi-quantitative and symbolic settings , 2002 .

[39]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[40]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[42]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[43]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..