Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation

We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.

[1]  L. Ricketson A multilevel Monte Carlo method for a class of McKean-Vlasov processes , 2015, 1508.02299.

[2]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[3]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[4]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[5]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[9]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[10]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[11]  Sten Rüdiger,et al.  Particle-Based Multiscale Modeling of Calcium Puff Dynamics , 2015, Multiscale Model. Simul..

[12]  Pierre Del Moral,et al.  On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters , 2016, 1605.09329.

[13]  Abdul Lateef,et al.  Pedestrian Flow in the Mean Field Limit , 2012 .

[14]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[15]  A. Sznitman Topics in propagation of chaos , 1991 .

[16]  Bruce I. Cohen,et al.  Multilevel Monte Carlo simulation of Coulomb collisions , 2013, J. Comput. Phys..

[17]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[18]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[19]  Mireille Bossy,et al.  A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..

[20]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[21]  C. Reisinger,et al.  Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives , 2012, 1211.0707.

[22]  Vassili N. Kolokoltsov,et al.  On mean field games with common noise and McKean-Vlasov SPDEs , 2015, Stochastic Analysis and Applications.

[23]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[24]  D. Talay,et al.  Convergence Rate for the Approximation of the Limit Law of Weakly Interacting Particles 2: Application to the Burgers Equation , 1996 .

[25]  M. Giles,et al.  Antithetic Multilevel Monte Carlo Estimation for Multidimensional SDEs , 2013 .

[26]  R. Erban,et al.  From individual to collective behaviour of coupled velocity jump processes: a locust example , 2011, 1104.2584.

[27]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[28]  Radek Erban,et al.  A Cucker-Smale Model with Noise and Delay , 2015, SIAM J. Appl. Math..

[29]  J. Gärtner On the McKean‐Vlasov Limit for Interacting Diffusions , 1988 .