Spectral element-based method for a one-dimensional damaged structure with distributed random properties

Stochastic methods have received considerable attention because they address the randomness present in structural numerical models. Uncertainties represent important events in dynamic systems regarding vibration response prediction, especially in the mid- and high-frequency ranges, when responses have higher dispersions. The spectral element method (SEM) is suitable for analysing wave propagation problems based on large frequency ranges. It is a powerful tool for structural health monitoring. This paper unifies these two techniques to use the SEM with distributed randomness in the system parameters to model structural damage. Parameters are assumed to be distributed along the structure and expressed as a random field, which are expanded in the Karhunen–Loève spectral decomposition and memoryless transformation. A frequency-dependent stochastic stiffness and mass element matrices are formulated for bending vibration. Closed-form expressions are derived by the Karhunen–Loève expansion. Numerical examples are used to address the proposed methodology.

[1]  Garching,et al.  Numerical Simulation of Non‐Gaussian Random Fields with Prescribed Correlation Structure , 2001, astro-ph/0105107.

[2]  Sondipon Adhikari,et al.  A spectral approach for damage quantification in stochastic dynamic systems , 2017 .

[3]  Marek Krawczuk,et al.  Longitudinal wave propagation. Part I-Comparison of rod theories , 2006 .

[4]  W. Ostachowicz,et al.  Guided Waves in Structures for SHM: The Time - domain Spectral Element Method , 2012 .

[5]  Marek Krawczuk,et al.  Spectral Finite Element Method , 2012 .

[6]  J. R. Banerjee,et al.  Dynamic stiffness formulation for structural elements: A general approach , 1997 .

[7]  M V Lowson,et al.  Theory of open supersonic rotor noise , 1974 .

[8]  J. Banerjee Coupled bending–torsional dynamic stiffness matrix for beam elements , 1989 .

[9]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[10]  Wieslaw Ostachowicz,et al.  Damage detection of structures using spectral finite element method , 2008 .

[11]  C. S. Manohar,et al.  Transient Dynamics of Stochastically Parametered Beams , 2000 .

[12]  James F. Doyle,et al.  Wave Propagation in Structures , 1989 .

[13]  Walter D. Pilkey,et al.  Literature Review : Literature Review of Variants of the Dynamic Stiffness Method: Part 2: Frequency-Dependent Matrix and Other Corrective Methods , 1993 .

[14]  Dimitri E. Beskos,et al.  Dynamic response of frameworks by fast fourier transform , 1982 .

[15]  Walter D. Pilkey,et al.  LITERATURE REVIEW analysis of the shock and vibration literature: Literature Review of Variants of the Dynamic Stiffness Method, Part 1: The Dynamic Element Method , 1993 .

[16]  Mario Paz,et al.  Structural Dynamics: Theory and Computation , 1981 .

[17]  James F. Doyle,et al.  Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms , 1997 .

[18]  Paul D. Wilcox,et al.  Enhanced detection through low-order stochastic modeling for guided-wave structural health monitoring , 2012 .

[19]  José Roberto de França Arruda,et al.  Modeling of coupled structural systems by an energy spectral element method , 2008 .

[20]  Geert Lombaert,et al.  Application of the stochastic finite element method for Gaussian and non-Gaussian systems , 2004 .

[21]  A. M. R. Ribeiro,et al.  A review of vibration-based structural health monitoring with special emphasis on composite materials , 2006 .

[22]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[23]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .

[24]  Marc J. Richard,et al.  Free vibrational analysis of axially loaded bending-torsion coupled beams: a dynamic finite element , 2000 .

[25]  Marek Krawczuk,et al.  Application of spectral beam finite element with a crack and iterative search technique for damage detection , 2002 .

[26]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements , 1992 .

[27]  J. R. Banerjee,et al.  Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams , 1985 .

[28]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[29]  Marek Krawczuk,et al.  The dynamic analysis of a cracked Timoshenko beam by the spectral element method , 2003 .

[30]  C. S. Manohar,et al.  Dynamic stiffness of randomly parametered beams , 1998 .

[31]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[32]  Z. Su,et al.  Identification of Damage Using Lamb Waves , 2009 .

[33]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements , 1992 .

[34]  Srinivasan Gopalakrishnan,et al.  Spectral element approach to wave propagation in uncertain beam structures , 2010 .

[36]  Long Chen FINITE ELEMENT METHOD , 2013 .

[37]  G. V. Narayanan,et al.  Use of dynamic influence coefficients in forced vibration problems with the aid of fast fourier transform , 1975 .

[38]  U. Lee Spectral Element Method in Structural Dynamics , 2009 .

[39]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[40]  Spectral Analysis of Wave Motion , 1989 .

[41]  S. Adhikari Doubly Spectral Stochastic Finite-Element Method for Linear Structural Dynamics , 2011 .

[42]  Martin Veidt,et al.  Probabilistic Damage Characterisation in Beams using Guided Waves , 2011 .

[43]  S. Finnveden SPECTRAL FINITE ELEMENT ANALYSIS OF THE VIBRATION OF STRAIGHT FLUID-FILLED PIPES WITH FLANGES , 1997 .

[44]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[45]  J. R. Banerjee,et al.  Free vibration of composite beams - An exact method using symbolic computation , 1995 .

[46]  Lachlan J. Gunn,et al.  Simulation of Statistical Distributions using the Memoryless Nonlinear Transform , 2011 .

[47]  M. R. Machado,et al.  Reliability Analysis Of Damaged Beam Spectral Element With Parameter Uncertainties , 2015 .

[48]  Paolo Bocchini,et al.  A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process , 2011 .

[49]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[50]  R. Sampaio,et al.  Stochastic analysis of a cracked rod modeled via the spectral element method , 2010 .

[51]  Charles R. Farrar,et al.  A summary review of vibration-based damage identification methods , 1998 .

[52]  Marc J. Richard,et al.  A NEW DYNAMIC FINITE ELEMENT (DFE) FORMULATION FOR LATERAL FREE VIBRATIONS OF EULER–BERNOULLI SPINNING BEAMS USING TRIGONOMETRIC SHAPE FUNCTIONS , 1999 .