System Modelling and Optimization

The paper discusses a new view on globalization techniques for Newton's method. In particular, strategies based on "natural level functions" are considered and their properties are investigated. A "restrictive mDnotonicity test" is introduced and theoretically motivated. Numerical results for a highly nonlinear optimal control problem from aerospace engineering and a parameter estimation for a chemical process are presented.

[1]  Adam B. Levy,et al.  Implicit multifunction theorems for the sensitivity analysis of variational conditions , 1996, Math. Program..

[2]  R.W.H. Sargent,et al.  A New SQP Algorithm for Large-Scale Nonlinear Programming , 2000, SIAM J. Optim..

[3]  B. N. Pshenichnyi Algorithms for general mathematical programming problems , 1970 .

[4]  Henry Wolkowicz,et al.  Convex Relaxations of (0, 1)-Quadratic Programming , 1995, Math. Oper. Res..

[5]  A. Tits,et al.  Avoiding the Maratos effect by means of a nonmonotone line search I. general constrained problems , 1991 .

[6]  R. Vanderbei LOQO:an interior point code for quadratic programming , 1999 .

[7]  Huifu Xu,et al.  Set-valued approximations and Newton’s methods , 1999, Math. Program..

[8]  Robert J. Vanderbei,et al.  Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods , 2000, Math. Program..

[9]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[10]  José Herskovits,et al.  A two-stage feasible directions algorithm for nonlinear constrained optimization , 1981, Math. Program..

[11]  Ya-Xiang Yuan,et al.  On the superlinear convergence of a trust region algorithm for nonsmooth optimization , 1985, Math. Program..

[12]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[13]  Michael A. Saunders,et al.  A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .

[14]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[15]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[16]  Nicholas I. M. Gould,et al.  Methods for nonlinear constraints in optimization calculations , 1996 .

[17]  Gábor Pataki,et al.  On the generic properties of convex optimization problems in conic form , 2001, Math. Program..

[18]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[19]  Jorge Nocedal,et al.  On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization , 1998, SIAM J. Optim..

[20]  Hiroshi Yamashita,et al.  Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization , 1996, Math. Program..

[21]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[22]  Ya-Xiang Yuan,et al.  Optimality Conditions for the Minimization of a Quadratic with Two Quadratic Constraints , 1997, SIAM J. Optim..

[23]  R. Fletcher,et al.  Resolving degeneracy in quadratic programming , 1993, Ann. Oper. Res..

[24]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[25]  A. J. Quist,et al.  Copositive relaxation for general quadratic programming. , 1998 .

[26]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[27]  E. Panier,et al.  A superlinearly convergent feasible method for the solution of inequality constrained optimization problems , 1987 .

[28]  D. Mayne,et al.  A surperlinearly convergent algorithm for constrained optimization problems , 1982 .

[29]  R. Rockafellar Proto-Differentiability of Set-Valued Mappings and its Applications in Optimization☆ , 1989 .

[30]  Todd Plantenga,et al.  A Trust Region Method for Nonlinear Programming Based on Primal Interior-Point Techniques , 1998, SIAM J. Sci. Comput..

[31]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[32]  Stephen J. Wright,et al.  pPCx: Parallel Software for Linear Programming , 1997, PPSC.

[33]  Matthias Heinkenschloss On the solution of a two ball trust region subproblem , 1992, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[34]  Erling D. Andersen,et al.  A parallel interior-point algorithm for linear programming on a shared memory machine , 1998 .

[35]  Diethard Klatte,et al.  Strong stability in nonlinear programming revisited , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[36]  J. Nieuwenhuis Another application of Guignard's generalized Kuhn-Tucker conditions , 1980 .

[37]  N. Gould An Algorithm for Large-Scale Quadratic Programming , 1991 .

[38]  M. Ramana An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .

[39]  Henry Wolkowicz,et al.  A Recipe for Semidefinite Relaxation for , 1995 .

[40]  Giorgio Gallo,et al.  A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min-Cost Flow Problems , 1999, INFORMS J. Comput..

[41]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[42]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[43]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[44]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .

[45]  Francisco J. Prieto,et al.  A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem , 1995, SIAM J. Optim..

[46]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[47]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[48]  Stefano Lucidi,et al.  New Results on a Continuously Differentiable Exact Penalty Function , 1992, SIAM J. Optim..

[49]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[50]  Nicholas I. M. Gould,et al.  SQP Methods for Large-Scale Nonlinear Programming , 1999, System Modelling and Optimization.

[51]  Hiroshi Yamashita,et al.  Q-SUPERLINEAR CONVERGENCE OF PRIMAL-DUAL INTERIOR POINT QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION , 1997 .

[52]  J. Ecker,et al.  Geometric programming: Duality in quadratic programming and lp-approximation III (degenerate programs) , 1970 .

[53]  A. Peressini Ordered topological vector spaces , 1967 .

[54]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[55]  James Renegar,et al.  Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..

[56]  Jacek Gondzio,et al.  Parallel Implementation of a Central Decomposition Method for Solving Large-Scale Planning Problems , 2001, Comput. Optim. Appl..

[57]  R. W. H. Sargent,et al.  The Development of the SQP Algorithm for Nonlinear Programming , 1997 .

[58]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[59]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[60]  G. P. Barker,et al.  Projectionally exposed cones , 1987 .

[61]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[62]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[63]  William W. Hager,et al.  Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..

[64]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[65]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[66]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[67]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[68]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .

[69]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..