Hierarchical Ann Classification Model Combined with the Adaptive Searching Strategy

We propose a hierarchical architecture of ART2 Network for performance improvement and fast pattern classification model using fitness selection. This hierarchical network creates coarse clusters as first ART2 network layer by unsupervised learning, then creates fine clusters of the each first layer as second network layer by supervised learning. First, it compares input pattern with each clusters of first layer and select candidate clusters by fitness measure. We design a optimized fitness function for pruning clusters by measuring relative distance ratio between a input pattern and clusters. This makes it possible to improve speed and accuracy. Next, it compares input pattern with each clusters connected with selected clusters and finds winner cluster. Finally it classifies the pattern by a label of the winner cluster. Results of our experiments show that the proposed method is more accurate and fast than other approaches.