Mixed Finite Element Method for a Degenerate Convex Variational Problem from Topology Optimization

The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem $E\left( v \right):= \int_\Omega \varphi_0\left( \left\lvert\nabla v\right\rvert \right)\operatorname{dx} - \int_\Omega fv\operatorname{dx}\text{for } v \in V:=H^1_0( \Omega )$ with possibly multiple primal solutions $u$, but with unique stress $\sigma:=\varphi_0'\left( \left\lvert\nabla u\right\rvert \right)\operatorname{sign}\nabla u.$ The mixed finite element method is motivated by the smoothness of the stress variable $\sigma \in H^1_{\operatorname{loc}}( \Omega ; \mathbb R^2)$, while the primal variables are uncontrollable and possibly nonunique. The corresponding nonlinear mixed finite element method is introduced, analyzed, and implemented. The striking result of this paper is a sharp a posteriori error estimation in the dual formulation, while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap. An empirical comparison of that primal formulation with the new mixed discretization schemes is intended for uniform and adaptive mesh refinements.

[1]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[2]  Gabriel Wittum,et al.  Analysis and numerical studies of a problem of shape design , 1991 .

[3]  Carsten Carstensen,et al.  Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..

[4]  Carsten Carstensen,et al.  Local Stress Regularity in Scalar Nonconvex Variational Problems , 2002, SIAM J. Math. Anal..

[5]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[6]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[7]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[8]  Carsten Carstensen,et al.  A convergent adaptive finite element method for an optimal design problem , 2007, Numerische Mathematik.

[9]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[10]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[11]  Mircea Sofonea,et al.  Elements of Nonlinear Analysis , 2013 .

[12]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[13]  James F. Blowey,et al.  Theory and Numerics of Differential Equations , 2001 .

[14]  Weimin Han,et al.  A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations , 2004 .

[15]  Carsten Carstensen,et al.  Numerical Analysis of microstructure , 2001 .

[16]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[17]  G. Papanicolaou,et al.  Les méthodes de l'homogénéisation : théorie et applications en physique , 1985 .

[18]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[19]  Donald A. French,et al.  On the convergence of finite-element approximations of a relaxed variational problem , 1990 .

[20]  Andreas Prohl,et al.  Numerical analysis of relaxed micromagnetics by penalised finite elements , 2001, Numerische Mathematik.