Fundamentals of Interface and Colloid Science

Publisher Summary This chapter discusses Lyklema's definition of a colloid as “an entity, having at least in one direction a dimension between 1 nm and 1 μm—that is, between 10 –9 and 10 –6 m. The entities may be solid, liquid, or, in some cases, even gaseous. They are dispersed in the medium,” which may be also solid, liquid, or gaseous. All the colloids can be defined as “a collection of particles immersed in a liquid”; the particles can be solid (a suspension or dispersion), liquid (an emulsion), or gas (a foam). These three types of dispersed systems play an important role in all kinds of applications: paints, latices, food products, cements, minerals, ceramics, blood, and many others. All these disperse systems have one common feature; because of their small size, they all have a high surface area relative to their volume. It is the surface-related phenomena that primarily determines their behavior in various processes and justifies consideration of colloids as effectively a different state of matter. The chapter includes the combined terms and methods that have been created over the course of two centuries to characterize these very special systems. Real heterogeneous systems, by their very nature, are quite complex. Two of these complexities are the variation of the particle size and the shape within a particular dispersion. There are three groups of traditional particle sizing methods that can be applied to characterize the size of colloidal particles. These groups are: (1) counters, (2) fractionation techniques, and (3) macroscopic fitting techniques.

[1]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.

[2]  G. Shaposhnikova,et al.  Electrical phenomena at interfaces , 1999, Proceedings of 1999 IEEE 13th International Conference on Dielectric Liquids (ICDL'99) (Cat. No.99CH36213).

[3]  J. Lyklema,et al.  On surface conduction and its role in electrokinetics. , 1998 .

[4]  R. W. O'Brien Electroosmosis in porous materials , 1986 .

[5]  M. A. Bevan,et al.  Aggregation Dynamics for Two Particles during Electrophoretic Deposition under Steady Fields , 2000 .

[6]  H. A. Pohl,et al.  Cellular spin resonance of aging yeast and mouse sarcoma cells , 1982 .

[7]  C. Zukoski,et al.  Electrokinetic properties of particles in concentrated suspensions , 1987 .

[8]  J. Overbeek,et al.  Interpretation of the conductance and transference of bovine serum albumin solutions , 1961 .

[9]  H. Lekkerkerker,et al.  On understanding microemulsions: II. Thermodynamics of droplet-type microemulsions , 1987 .

[10]  Vicsek,et al.  Dynamic cluster-size distribution in cluster-cluster aggregation: Effects of cluster diffusivity. , 1985, Physical review. B, Condensed matter.

[11]  Andrei S. Dukhin,et al.  New developments in acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions , 2001 .

[12]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[13]  I. G. Abidor,et al.  On the existence of an intramembrane field stabilization systems in cells , 1991 .

[14]  S. Ross,et al.  The effects of the overlap of double layers on electrophoretic mobilities of polydisperse suspensions , 1968 .

[15]  R. Hidalgo-Álvarez,et al.  Comparative sedimentation and streaming potential studies for ζ potential determination , 1985 .

[16]  Michael Faraday,et al.  Experimental Researches in Chemistry and Physics , 1990 .

[17]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[18]  M. Kosmulski,et al.  Correlation between the Zeta Potential and Rheological Properties of Anatase Dispersions. , 1999, Journal of colloid and interface science.

[19]  Joan E. Shields,et al.  Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density , 2006 .

[20]  R. J. Hunter,et al.  Zeta Potential in Colloid Science , 1981 .

[21]  Ronald F. Probstein,et al.  Bimodal model of concentrated suspension viscosity for distributed particle sizes , 1994 .

[22]  I. D. Morrison,et al.  Electrical charges in nonaqueous media , 1993 .

[23]  John Happel,et al.  Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles , 1958 .

[24]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[25]  H. Heywood,et al.  Particle Size Analysis , 1947, Nature.

[26]  J. Lyklema,et al.  Low-frequency dielectric relaxation of hematite and silica sols , 1993 .

[27]  S. Kuwabara,et al.  The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers , 1959 .

[28]  Kurt Leschonski,et al.  Representation and Evaluation of Particle Size Analysis Data , 1984 .

[29]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[30]  R. Fuchs,et al.  Theory of the optical properties of ionic crystal cubes , 1975 .

[31]  G. D. Parfitt,et al.  Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media , 1965 .

[32]  J. W. Goodwin,et al.  A study of some of the rheological properties of concentrated polystyrene latices , 1982 .

[33]  P. J. Goetz,et al.  Acoustic Spectroscopy for Concentrated Polydisperse Colloids with High Density Contrast , 1996 .

[34]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[35]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[36]  A. Dukhin,et al.  Peculiarities of live cells' interaction with micro- and nanoparticles. , 2010, Advances in colloid and interface science.

[37]  R. Irani,et al.  Particle Size: Measurement, Interpretation, and Application , 1963 .

[38]  H. Jenssen,et al.  Experimental and functional changes in transmembrane potential and zeta potential of single cultured cells. , 1974, Experimental cell research.

[39]  Tianbo Liu,et al.  Characterization of Nanoparticles by Scattering Techniques , 2000 .

[40]  P. J. Goetz,et al.  Gravity as a factor of aggregative stability and coagulation. , 2007, Advances in colloid and interface science.

[41]  A. S. Dukhin,et al.  Interaction of energized bacteria cells with particles of colloidal gold: peculiarities and kinetic model of the process. , 1992, Biochimica et biophysica acta.

[42]  S. Dukhin,et al.  Electrokinetics at high ionic strength and hypothesis of the double layer with zero surface charge. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[43]  P. Zinin Theoretical analysis of sound attenuation mechanisms in blood and in erythrocyte suspensions. , 1992, Ultrasonics.

[44]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[45]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[46]  M. Kosmulski,et al.  Charge interactions in semi-concentrated titania suspensions at very high ionic strengths , 1999 .

[47]  L. White,et al.  Dielectric response and conductivity of dilute suspensions of colloidal particles , 1981 .

[48]  V. Shilov,et al.  Dynamic Electrophoretic Mobility in Concentrated Dispersed Systems. Cell Model , 1999 .

[49]  T. Barrett Energy transfer dynamics. , 1980, Advances in biological and medical physics.

[50]  J. Trevors,et al.  Micro-Organism-Gold Interactions , 1998, Biometals.

[51]  J. M. Carstensen,et al.  Estimation of Nanoparticle Size Distributions by Image Analysis , 2000 .

[52]  S. G. Mason,et al.  The microrheology of colloidal dispersions , 1973 .

[53]  A. S. Dukhin,et al.  Pair interaction of particles in electric field. 2. Influence of polarization of double layer of dielectric particles on their hydrodynamic interaction in a stationary electric field , 1986 .

[54]  S. G. Mason,et al.  The microrheology of colloidal dispersions: IV. Pairs of interacting spheres in shear flow , 1976 .

[55]  R. W. O'Brien The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .

[56]  Hiroyuki Ohshima,et al.  A Simple Expression for Henry's Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles , 1994 .

[57]  R. J. Hunter,et al.  Surface properties of aluminum hydroxide at high salt concentration , 1997 .

[58]  D. Saville,et al.  Dielectric spectroscopy of colloidal suspensions: I. The dielectric spectrometer , 1989 .

[59]  A. L. Loeb,et al.  The electrical double layer around a spherical colloid particle , 1961 .

[60]  J. Rosenholm,et al.  Electroacoustic Study of Adsorption of Ions on Anatase and Zirconia from Very Concentrated Electrolytes , 1996 .

[61]  J. Lyklema,et al.  Effects of surface conduction on the electrokinetic properties of colloids , 1992 .

[62]  R. M. Fuoss Ionic Association. III. The Equilibrium between Ion Pairs and Free Ions , 1958 .

[63]  I. Tsoneva,et al.  Relationship between the power of energization and the electrophoretic mobility of rat liver mitochondria , 1984 .

[64]  W. T. Perrins,et al.  The electrical conductivity of a porous plug , 1984 .

[65]  J. Ferry,et al.  Behavior of concentrated polymer solutions under periodic stresses , 1947 .

[66]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[67]  R. Pogorzelski,et al.  Erratum: Eigenfunction solution of the scattering of beam radiation fields by spherical objects , 1975 .

[68]  R. Jongschaap,et al.  A transient-network model describing the rheological behaviour of concentrated dispersions , 1984 .

[69]  C. F. González-Fernández,et al.  The effect of packing density of cellulose plugs on streaming potential phenomena , 1983 .

[70]  G. G. Stokes On a Difficulty in the Theory of Sound , 1848 .

[71]  S. Dukhin,et al.  Poisson–Boltzmann equation for spherical cell model: approximate analytical solution and applications , 2001 .

[72]  Andrei S. Dukhin,et al.  Characterization of Liquids, Nano- And Microparticulates, and Porous Bodies Using Ultrasound , 2010 .

[73]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[74]  Chester T. O'Konski,et al.  ELECTRIC PROPERTIES OF MACROMOLECULES. V. THEORY OF IONIC POLARIZATION IN POLYELECTROLYTES , 1960 .

[75]  J. Frenkel,et al.  On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil , 2005 .

[76]  P. J. Goetz,et al.  How non-ionic “electrically neutral” surfactants enhance electrical conductivity and ion stability in non-polar liquids , 2006 .

[77]  S. Levine,et al.  The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis , 1974 .

[78]  A. Dukhin,et al.  Electrodiffusiophoresis - film formation in Ac and Dc electrical fields and its application for bactericidal coatings , 1990 .

[79]  A. Dukhin Biospecific mechanism of double layer formation and peculiarities of cell electrophoresis , 1993 .

[80]  D. Wasan,et al.  On the interpretation of streaming potential data in nonaqueous media , 1983 .

[81]  R. Chivers,et al.  Thermal effects in the attenuation of ultrasound in dilute suspensions for low values of acoustic radius , 1990 .

[82]  G. Fuller,et al.  Electric field induced structure in dense suspensions , 1993 .

[83]  Applicability of the Biot theory. I. Low‐porosity materials , 1985 .

[84]  S. Malghan Electroacoustics for characterization of particulates and suspensions , 1993 .

[85]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[86]  Li,et al.  Effective medium approximation and deposition of colloidal particles in fibrous and granular media , 2000, Advances in colloid and interface science.

[87]  J. Lyklema,et al.  Electrostatic stabilization in non-aqueous media , 1992 .

[88]  J. L. Anderson,et al.  The streaming potential and inadequacies of the Helmholtz equation , 1985 .

[89]  T. Allen Particle Size Measurement , 1965, Nature.

[90]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[91]  D. Saville,et al.  The interpretation of dielectric response measurements on colloidal dispersions using the dynamic Stern layer model , 1993 .

[92]  J. Lyklema Principles of the stability of lyophobic colloidal dispersions in non-aqueous media , 1968 .

[93]  Kosmulski Positive Electrokinetic Charge of Silica in the Presence of Chlorides. , 1998, Journal of colloid and interface science.

[94]  E. Yeager,et al.  Compressibility of Colloids: I. Compressibility Studies of Aqueous Solutions of Amphiphilic Polymers and Their Adsorbed State on Polystyrne Latex Dispersions by Ultrasonic Velocity Measurements. , 1983 .

[95]  R. J. Hunter,et al.  The effect of electrolyte concentration and co-ion type on the ζ-potential of polystyrene latices , 1988 .

[96]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[97]  R. Treffers,et al.  High-resolution spectra of cool stars in the 10- and 20-micron regions , 1974 .

[98]  Kolchin Sp Contractile function of the cardiac muscle during traumatization and stimulation of restorative processes , 1967 .

[99]  R. C. Weast Handbook of chemistry and physics , 1973 .

[100]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[101]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[102]  P. Hoeven Electrostratic stabilization of suspensions in non-aqueous media , 1991 .

[103]  D. Fairhurst,et al.  Electrophoretic fingerprinting and the biological activity of colloidal indicators , 1988 .

[104]  S. Dukhin,et al.  Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules , 2005, Electrophoresis.

[105]  E. Davis,et al.  Electrokinetic phenomena in fibrous porous media , 1986 .

[106]  J. Barger,et al.  Elements of acoustics , 1998 .

[107]  R. J. Hunter Recent developments in the electroacoustic characterisation of colloidal suspensions and emulsions , 1998 .

[108]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[109]  V. Muller,et al.  Steady-state flows induced by oscillations of a drop with an adsorption layer , 1992 .

[110]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[111]  H. A. Pohl Micro-dielectrophoresis of Dividing Cells , 1980 .