Modulation and Synchronization for Aeronautical Telemetry

Modulation and Synchronization for Aeronautical Telemetry Christopher G. Shaw Department of Electrical and Computer Engineering Doctor of Philosophy Aeronautical telemetry systems have historically been implemented with constant envelope modulations like CPM. Shifts in system constraints including reduced available bandwidth and increased throughput demands have caused many in the field to reevaluate traditional methods and design practices. This work examines the costs and benefits of using APSK for aeronautical telemetry instead of CPM. Variable rate turbo codes are used to improve the power efficiency of 16and 32-APSK. Spectral regrowth in nonlinear power amplifiers when driven by non-constant envelope modulation is also considered. Simulation results show the improved spectral efficiency of this modulation scheme over those currently defined in telemetry standards. Additionally, the impact of transitioning from continuous transmission to burst-mode is considered. Synchronization loops are ineffective in burst-mode communication. Dataaided feedforward algorithms can be used to estimate offsets in carrier phase, frequency, and symbol timing between the transmitter and the receiver. If a data-aided algorithm is used, a portion of the transmitted signal is devoted to a known sequence of pilot symbols. Optimum pilot sequences for the three synchronization parameters are obtained analytically and numerically for different system constraints. The alternating sequence is shown to be optimal given a peak power constraint. Alternatively, synchronization can be accomplished using blind algorithms that do not rely on a priori knowledge of a pilot sequence. If blind algorithms are used, the observation interval can be longer than for data-aided algorithms. There are combinations of pilot sequence length and packet length where data-aided algorithms perform better than blind algorithms and vice versa. The conclusion is that a sequential arrangement of blind algorithms operating over an entire burst performs better than a CRB-achieving data-aided algorithm operating over a short pilot sequence.

[1]  Philippe Loubaton,et al.  Asymptotic analysis of blind cyclic correlation based symbol rate estimation , 2000, 2000 10th European Signal Processing Conference.

[2]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[3]  Marco Luise,et al.  Design and analysis of a jitter-free clock recovery scheme for QAM systems , 1993, IEEE Trans. Commun..

[4]  Antonio A. D'Amico,et al.  Maximum Likelihood Timing and Carrier Synchronization in Burst-Mode Satellite Transmissions , 2007, EURASIP J. Wirel. Commun. Netw..

[5]  Ayman Elezabi,et al.  Blind symbol rate estimation using autocorrelation and zero crossing detection , 2013, 2013 IEEE International Conference on Communications (ICC).

[6]  H. Bruneel,et al.  Carrier phase and frequency estimation for pilot-symbol assisted transmission: bounds and algorithms , 2005, IEEE Transactions on Signal Processing.

[7]  C. Thomas,et al.  Digital Amplitude-Phase Keying with M-Ary Alphabets , 1974, IEEE Trans. Commun..

[8]  Keren Wang,et al.  A New Method to Symbol Rate Estimation of MPSK Signals , 2008, 2008 Congress on Image and Signal Processing.

[9]  Ramjee Prasad,et al.  OFDM for Wireless Multimedia Communications , 1999 .

[10]  Marco Luise,et al.  Carrier frequency and frequency rate-of-change estimators with preamble-postamble pilot symbol distribution , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[11]  Philippe Loubaton,et al.  Performance analysis of a class of nondata-aided frequency offset and symbol timing estimators for flat-fading channels , 2002, IEEE Trans. Signal Process..

[12]  Henk Wymeersch,et al.  ML-based blind symbol rate detection for multi-rate receivers , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[13]  Gerd Ascheid,et al.  An all digital receiver architecture for bandwidth efficient transmission at high data rates , 1989, IEEE Trans. Commun..

[14]  Henk Wymeersch,et al.  True Cramer-Rao bound for timing recovery from a bandlimited linearly Modulated waveform with unknown carrier phase and frequency , 2004, IEEE Transactions on Communications.

[15]  A. Sergienko,et al.  Analytical evaluation of performance for harmonic and biharmonic methods of blind phase offset estimation , 2012, 2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems.

[16]  Georgios B. Giannakis,et al.  Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach , 1998, IEEE Trans. Commun..

[17]  M. Rice,et al.  The Cramér-Rao Bound for joint parameter estimation of burst-mode QPSK , 2009, MILCOM 2009 - 2009 IEEE Military Communications Conference.

[18]  P. Loubaton,et al.  Cyclic correlation based symbol rate estimation , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[19]  H. Meyr,et al.  A fully digital feedforward MSK demodulator with joint frequency offset and symbol timing estimation for burst mode mobile radio , 1993 .

[20]  C. Rapp,et al.  Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a Digital Sound Broadcasting System. , 1991 .

[21]  David C. Chu,et al.  Polyphase codes with good periodic correlation properties (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[22]  Gonçalo Nuno Gomes Tavares,et al.  Sequence Design for Data-Aided Estimation of Synchronization Parameters , 2007, IEEE Transactions on Communications.

[23]  John S. Baras,et al.  On the performance limits of data-aided synchronization , 2003, IEEE Trans. Inf. Theory.

[24]  Hlaing Minn,et al.  An optimal training signal structure for frequency-offset estimation , 2005, IEEE Transactions on Communications.

[25]  Luc Vandendorpe,et al.  Blind carrier frequency offset estimation for noncircular constellation-based transmissions , 2003, IEEE Trans. Signal Process..

[26]  Marc Moeneclaey,et al.  On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters , 1998, IEEE Trans. Commun..

[27]  Michael Rice,et al.  Turbo-coded APSK for aeronautical telemetry , 2009, 2009 International Waveform Diversity and Design Conference.

[28]  Philippe Loubaton,et al.  Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[29]  Michael Rice,et al.  Optimum Pilot Sequences for Data-Aided Synchronization , 2013, IEEE Transactions on Communications.

[30]  Heidi Steendam,et al.  The true Cramer-Rao bound for carrier frequency estimation from a PSK signal , 2004, IEEE Transactions on Communications.

[31]  Georgios B. Giannakis,et al.  Statistical tests for presence of cyclostationarity , 1994, IEEE Trans. Signal Process..

[32]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[33]  H. Meyr,et al.  Maximum likelihood open loop carrier synchronizer for digital radio , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[34]  Erchin Serpedin,et al.  An alternative blind feedforward symbol timing estimator using two samples per symbol , 2003, IEEE Trans. Commun..

[35]  Nelson Sollenberger,et al.  Burst coherent demodulation with combined symbol timing, frequency offset estimation, and diversity selection , 1991, IEEE Trans. Commun..

[36]  Christopher Shaw Adjacent Channel Interference for Turbo-Coded APSK , 2008 .

[37]  M. P. Fitz Planar filtered techniques for burst mode carrier synchronization , 1991, IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record.

[38]  Sang Uk Lee,et al.  On a timing recovery technique for a variable symbol rate signal , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[39]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[40]  Robert L. Frank,et al.  Polyphase codes with good nonperiodic correlation properties , 1963, IEEE Trans. Inf. Theory.

[41]  Michael Frankfurter,et al.  Numerical Recipes In C The Art Of Scientific Computing , 2016 .

[42]  Ephraim Zehavi,et al.  8-PSK trellis codes for a Rayleigh channel , 1992, IEEE Trans. Commun..

[43]  Umberto Mengali,et al.  Feedforward ML-based timing estimation with PSK signals , 1997, IEEE Communications Letters.

[44]  E. B. Olasz,et al.  Simultaneous clock phase and frequency offset estimation , 1995, IEEE Trans. Commun..

[45]  R. C. Heimiller,et al.  Phase shift pulse codes with good periodic correlation properties , 1961, IRE Trans. Inf. Theory.

[46]  Jaume Riba Sagarra,et al.  Conditional maximum likelihood timing recovery: estimators and bounds , 2001 .

[47]  J. Eric Salt,et al.  Timing jitter analysis of optimum non-data-aided symbol synchronizer for QAM , 2010, IEEE Transactions on Communications.

[48]  M. Meyers,et al.  Joint Carrier Phase and Symbol Timing Recovery for PAM Systems , 1980, IEEE Trans. Commun..

[49]  Heinrich Meyr,et al.  Digital filter and square timing recovery , 1988, IEEE Trans. Commun..

[50]  Robert J. Inkol,et al.  Estimation of symbol rate from the autocorrelation function , 2009, 2009 Canadian Conference on Electrical and Computer Engineering.

[51]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[52]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[53]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[54]  A. Swami,et al.  On blind carrier recovery in time-selective fading channels , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[55]  Michael P. Fitz,et al.  Further results in the fast estimation of a single frequency , 1994, IEEE Trans. Commun..

[56]  J. Gunther,et al.  Cramer-Rao Bounds and Performance Analysis of a Low-Complexity Algorithm for Burst Mode Synchronization , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[57]  Umberto Mengali,et al.  The modified Cramer-Rao bound in vector parameter estimation , 1998, IEEE Trans. Commun..

[58]  Marc Moeneclaey Synchronization Problems in PAM Systems , 1980, IEEE Trans. Commun..

[59]  Michael Rice,et al.  Optimum Training Sequences for Data-Aided Synchronization , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[60]  Steven Kay,et al.  A Fast and Accurate Single Frequency Estimator , 2022 .

[61]  Erchin Serpedin,et al.  Optimal blind carrier recovery for MPSK burst transmissions , 2003, IEEE Trans. Commun..

[62]  Michael Rice,et al.  Digital Communications: A Discrete-Time Approach , 2008 .

[63]  Riccardo De Gaudenzi,et al.  Performance analysis of turbo-coded APSK modulations over nonlinear satellite channels , 2006, IEEE Transactions on Wireless Communications.

[64]  H. Meyr,et al.  Two frequency estimation schemes operating independently of timing information , 1993, Proceedings of GLOBECOM '93. IEEE Global Telecommunications Conference.

[65]  Marco Luise,et al.  Carrier frequency recovery in all-digital modems for burst-mode transmissions , 1995, IEEE Trans. Commun..

[66]  Seung Joon Lee A new non-data-aided feedforward symbol timing estimator using two samples per symbol , 2002, IEEE Commun. Lett..

[67]  Jaume Riba,et al.  Bayesian recursive estimation of frequency and timing exploiting the cyclostationarity property , 1994, Signal Process..

[68]  Roberto López-Valcarce,et al.  Non-Data-Aided Symbol Rate Estimation of Linearly Modulated Signals , 2008, IEEE Transactions on Signal Processing.

[69]  William A. Gardner,et al.  Signal interception: a unifying theoretical framework for feature detection , 1988, IEEE Trans. Commun..

[70]  Umberto Mengali,et al.  Synchronization Techniques for Digital Receivers , 1997, Applications of Communications Theory.

[71]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[72]  Umberto Mengali,et al.  Data-aided frequency estimation for burst digital transmission , 1997, IEEE Trans. Commun..