Estimating networks with jumps.
暂无分享,去创建一个
[1] P. Perron,et al. Estimating and testing linear models with multiple structural changes , 1995 .
[2] E. Levina,et al. Joint Structure Estimation for Categorical Markov Networks , 2010 .
[3] Z. Harchaoui,et al. Multiple Change-Point Estimation With a Total Variation Penalty , 2010 .
[4] Pei Wang,et al. Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.
[5] Larry A. Wasserman,et al. Time varying undirected graphs , 2008, Machine Learning.
[6] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[7] S. Geer,et al. Locally adaptive regression splines , 1997 .
[8] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[9] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[10] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[11] E. Levina,et al. Joint estimation of multiple graphical models. , 2011, Biometrika.
[12] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[13] Hongzhe Li,et al. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. , 2006, Biostatistics.
[14] I JordanMichael,et al. Graphical Models, Exponential Families, and Variational Inference , 2008 .
[15] Eric P. Xing,et al. On Sparse Nonparametric Conditional Covariance Selection , 2010, ICML.
[16] A. Rinaldo. Properties and refinements of the fused lasso , 2008, 0805.0234.
[17] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[18] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[19] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[20] Eric P. Xing,et al. Sparsistent Estimation of Time-Varying Discrete Markov Random Fields , 2009, 0907.2337.
[21] Massimiliano Pontil,et al. Taking Advantage of Sparsity in Multi-Task Learning , 2009, COLT.
[22] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[23] P. Brucker. Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .
[24] Stanley R. Johnson,et al. Varying Coefficient Models , 1984 .
[25] Le Song,et al. Estimating time-varying networks , 2008, ISMB 2008.
[26] J. Lafferty,et al. High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.
[27] J. Zidek,et al. ON SEGMENTED MULTIVARIATE REGRESSION , 1997 .
[28] Guillermo Sapiro,et al. Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..
[29] F. Bunea. Honest variable selection in linear and logistic regression models via $\ell_1$ and $\ell_1+\ell_2$ penalization , 2008, 0808.4051.
[30] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[31] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[32] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[33] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[34] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[35] Jianqing Fan,et al. NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES. , 2009, The annals of applied statistics.
[36] Amr Ahmed,et al. Recovering time-varying networks of dependencies in social and biological studies , 2009, Proceedings of the National Academy of Sciences.
[37] Martin J. Wainwright,et al. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.
[38] Hansheng Wang,et al. Nonparametric Covariance Model , 2008, Statistica Sinica.
[39] Pei Wang,et al. Learning networks from high dimensional binary data: An application to genomic instability data , 2009, 0908.3882.
[40] Ben Taskar,et al. Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .
[41] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[42] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.