Stability for differential mixed variational inequalities

In this paper, an existence theorem of Carathéodory weak solution for a differential mixed variational inequality is presented under suitable conditions. Furthermore, some upper semicontinuity and continuity results concerned with the Carathéodory weak solution set mapping for the differential mixed variational inequality are given when both the mapping and the constraint set are perturbed by two different parameters.

[1]  S. J. Li,et al.  Stability of weak vector variational inequality , 2009 .

[2]  Alfred Auslender,et al.  Primal and Dual Stability Results for Variational Inequalities , 2000, Comput. Optim. Appl..

[3]  Yeol Je Cho,et al.  Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings , 2006 .

[4]  Samir Adly,et al.  Stability of linear semi-coercive variational inequalities in Hilbert spaces: application to the Signorini-Fichera problem , 2006 .

[5]  S. J. Li,et al.  Hadamard well-posedness for a set-valued optimization problem , 2013, Optim. Lett..

[6]  Donal O'Regan,et al.  Differential mixed variational inequalities in finite dimensional spaces , 2010 .

[7]  Yiran He,et al.  Stable pseudomonotone variational inequality in reflexive Banach spaces , 2007 .

[8]  Kok Lay Teo,et al.  On the Stability of Generalized Vector Quasivariational Inequality Problems , 2002 .

[9]  Shengjie Li,et al.  Calculus rules of generalized $\epsilon-$subdifferential forvector valued mappings and applications , 2012 .

[10]  S. J. Li,et al.  On vector variational-like inequalities and set-valued optimization problems , 2011, Optim. Lett..

[11]  Jiang-hua Fan,et al.  Stability analysis for variational inequality in reflexive Banach spaces , 2008 .

[12]  G. Kassay,et al.  Multivalued Parametric Variational Inequalities with α-Pseudomonotone Maps , 2000 .

[13]  S. J. Li,et al.  Stability results for convex vector-valued optimization problems , 2011 .

[14]  J. Pang,et al.  Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory , 1994 .

[15]  R. Tobin Sensitivity analysis for variational inequalities , 1986 .

[16]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[17]  W. Rudin Real and complex analysis , 1968 .

[18]  András Domokos,et al.  Solution Sensitivity of Variational Inequalities , 1999 .

[19]  Nan-Jing Huang,et al.  Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces , 2010, J. Optim. Theory Appl..