First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications.

Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem (namely the Rutgers-Chalmers vdW-DF, Vydrov-Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko-Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.

[1]  Kristian Berland,et al.  Analysis of van der Waals density functional components: Binding and corrugation of benzene and C-60 on boron nitride and graphene , 2013 .

[2]  Jianwei Sun,et al.  Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. , 2016, Nature chemistry.

[3]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[4]  J. Perdew,et al.  Long-range van der Waals attraction and alkali-metal lattice constants , 2010 .

[5]  K. Tang,et al.  The van der Waals potentials between all the rare gas atoms from He to Rn , 2003 .

[6]  Anders Nilsson,et al.  Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. , 2013, The Journal of chemical physics.

[7]  I. Hamada,et al.  Reversible redox reaction and water configuration on a positively charged platinum surface: first principles molecular dynamics simulation. , 2011, Physical chemistry chemical physics : PCCP.

[8]  R. A. Aziz,et al.  A highly accurate interatomic potential for argon , 1993 .

[9]  A. Tkatchenko,et al.  Exploring the bonding of large hydrocarbons on noble metals: Diindoperylene on Cu(111), Ag(111), and Au(111) , 2013, 1304.3581.

[10]  O. A. V. Lilienfeld,et al.  Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory , 2005 .

[11]  C. Sherrill,et al.  Communication: resolving the three-body contribution to the lattice energy of crystalline benzene: benchmark results from coupled-cluster theory. , 2014, The Journal of chemical physics.

[12]  M. Head‐Gordon,et al.  Beyond Energies: Geometries of Nonbonded Molecular Complexes as Metrics for Assessing Electronic Structure Approaches. , 2015, Journal of chemical theory and computation.

[13]  Alexandre Tkatchenko,et al.  Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. , 2012, Physical review letters.

[14]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[15]  Efficient calculation of van der Waals dispersion coefficients with time-dependent density functional theory in real time: application to polycyclic aromatic hydrocarbons. , 2007, The Journal of chemical physics.

[16]  G. Beran,et al.  Accurate Molecular Crystal Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization. , 2011, Journal of chemical theory and computation.

[17]  Shen Li,et al.  A density functional for sparse matter , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  C. Bannwarth,et al.  Dispersion-Corrected Mean-Field Electronic Structure Methods. , 2016, Chemical reviews.

[19]  Elsebeth Schröder,et al.  Application of van der Waals density functional to an extended system: adsorption of benzene and naphthalene on graphite. , 2006, Physical review letters.

[20]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  A. Tkatchenko,et al.  Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem. , 2012, The Journal of chemical physics.

[22]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[23]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction revisited. , 2007, The Journal of chemical physics.

[24]  A. Tkatchenko,et al.  Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces , 2014, Accounts of chemical research.

[25]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[26]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[27]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[28]  P. Hyldgaard,et al.  Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond , 2007, cond-mat/0703442.

[29]  Alexandre Tkatchenko,et al.  Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. , 2010, The Journal of chemical physics.

[30]  A. Tkatchenko,et al.  Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. , 2015, Physical review letters.

[31]  A. Tkatchenko,et al.  On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions. , 2008, The Journal of chemical physics.

[32]  S. Blügel,et al.  Chemical versus van der Waals Interaction: the role of the heteroatom in the flat absorption of aromatic molecules C6H6, C5NH5, and C4N2H4 on the Cu(110) surface. , 2008, Physical review letters.

[33]  Andreas Savin,et al.  Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions. , 2014, The Journal of chemical physics.

[34]  Konrad Patkowski,et al.  Dispersionless density functional theory. , 2009, Physical review letters.

[35]  M. Rossi,et al.  Secondary Structure of Ac-Alan-LysH+ Polyalanine Peptides (n = 5,10,15) in Vacuo: Helical or Not? , 2010, 1005.1228.

[36]  D. Langreth,et al.  An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases. , 2008, The Journal of chemical physics.

[37]  S. Grimme,et al.  Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. , 2011, Journal of chemical theory and computation.

[38]  Toon Verstraelen,et al.  Assessment of Atomic Charge Models for Gas-Phase Computations on Polypeptides. , 2012, Journal of chemical theory and computation.

[39]  J. Dobson,et al.  Calculation of dispersion energies , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  K. Thygesen,et al.  Dispersive and covalent interactions between graphene and metal surfaces from the random phase approximation. , 2011, Physical review letters.

[41]  K. Thygesen,et al.  Accurate Ground State Energies of Solids and Molecules from Time Dependent Density Functional Theory , 2014, 1405.0745.

[42]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[43]  D. H. Everett Springer Tracts in Modern Physics Vol 72: Theory of van der Waals Attraction , 1975 .

[44]  Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions , 2006, cond-mat/0611015.

[45]  Angel Rubio,et al.  First-principles description of correlation effects in layered materials. , 2006, Physical review letters.

[46]  B. Rice,et al.  Assessing the Performances of Dispersion-Corrected Density Functional Methods for Predicting the Crystallographic Properties of High Nitrogen Energetic Salts. , 2014, Journal of chemical theory and computation.

[47]  Claire S. Adjiman,et al.  Report on the sixth blind test of organic crystal structure prediction methods , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[48]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[49]  J. Ángyán,et al.  On the equivalence of ring-coupled cluster and adiabatic connection fluctuation-dissipation theorem random phase approximation correlation energy expressions. , 2010, The Journal of chemical physics.

[50]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. , 1995 .

[51]  K. Jacobsen,et al.  Graphene on metals: A van der Waals density functional study , 2009, 0912.3078.

[52]  Stefan Grimme,et al.  Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. , 2013, Journal of chemical theory and computation.

[53]  A. Krasheninnikov,et al.  Are we van der Waals ready? , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  Filipp Furche,et al.  Molecular tests of the random phase approximation to the exchange-correlation energy functional , 2001 .

[55]  G. L. Klimchitskaya,et al.  The Casimir force between real materials: Experiment and theory , 2009, 0902.4022.

[56]  D. Langbein Theory of Van der Waals Attraction , 1974 .

[57]  A. Dalgarno,et al.  Linear response time-dependent density functional theory for van der Waals coefficients. , 2004, The Journal of chemical physics.

[58]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[59]  Gustavo E. Scuseria,et al.  Renormalized Second-order Perturbation Theory for The Electron Correlation Energy: Concept, Implementation, and Benchmarks , 2012, 1212.3674.

[60]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[61]  F. London,et al.  The general theory of molecular forces , 1937 .

[62]  Hiromi Nakai,et al.  Local response dispersion method. II. Generalized multicenter interactions. , 2010, The Journal of chemical physics.

[63]  John P. Perdew,et al.  Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes , 2000 .

[64]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[65]  C. Bannwarth,et al.  The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’ , 2014, ChemistryOpen.

[66]  Thomas Olsen,et al.  Beyond the random phase approximation: Improved description of short-range correlation by a renormalized adiabatic local density approximation , 2013 .

[67]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[68]  P. Pulay,et al.  The accuracy of quantum chemical methods for large noncovalent complexes. , 2013, Journal of chemical theory and computation.

[69]  J. Robinson,et al.  van der Waals screening by single-layer graphene and molybdenum disulfide. , 2014, ACS nano.

[70]  Wai-Yim Ching,et al.  Long Range Interactions in Nanoscale Science. , 2010 .

[71]  A. Seitsonen,et al.  Van der Waals effects in ab initio water at ambient and supercritical conditions. , 2011, The Journal of chemical physics.

[72]  J. Sancho‐García,et al.  Reliable DFT-based estimates of cohesive energies of organic solids: the anthracene crystal. , 2012, The Journal of chemical physics.

[73]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[74]  John P. Perdew,et al.  Twelve outstanding problems in ground-state density functional theory: A bouquet of puzzles , 2011 .

[75]  Q. Cui,et al.  Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins , 2015, Journal of chemical theory and computation.

[76]  A. Unsöld Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte , 1927 .

[77]  Alán Aspuru-Guzik,et al.  Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions , 2015, Chemical science.

[78]  T. Björkman van der Waals density functional for solids , 2012 .

[79]  Sarah L Price,et al.  Predicting crystal structures of organic compounds. , 2014, Chemical Society reviews.

[80]  Stefano de Gironcoli,et al.  Nonlocal van der Waals density functional made simple and efficient , 2013 .

[81]  A. Tkatchenko,et al.  Wavelike charge density fluctuations and van der Waals interactions at the nanoscale , 2016, Science.

[82]  Andreas Savin,et al.  Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation. , 2008, Physical review letters.

[83]  J. Mitroy,et al.  Long-range dispersion interactions. I. Formalism for two heteronuclear atoms , 2007 .

[84]  J. Klimeš,et al.  Improved description of soft layered materials with van der Waals density functional theory , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in density functional theory by combining the quantum harmonic oscillator-model with localized Wannier functions. , 2013, The Journal of chemical physics.

[86]  J. Klimeš,et al.  Singles correlation energy contributions in solids. , 2015, The Journal of chemical physics.

[87]  Filipp Furche,et al.  Basis set convergence of molecular correlation energy differences within the random phase approximation. , 2012, The Journal of chemical physics.

[88]  Alexandre Tkatchenko,et al.  Long-range correlation energy calculated from coupled atomic response functions. , 2013, The Journal of chemical physics.

[89]  Troy Van Voorhis,et al.  Dispersion interactions from a local polarizability model , 2010, 1004.4850.

[90]  A. Soper,et al.  Quantum Differences between Heavy and Light Water. , 2008, Physical review letters.

[91]  Alexandre Tkatchenko,et al.  Unraveling the stability of polypeptide helices: critical role of van der Waals interactions. , 2011, Physical review letters.

[92]  A. Otero-de-la-Roza,et al.  Many-body dispersion interactions from the exchange-hole dipole moment model. , 2013, The Journal of chemical physics.

[93]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[94]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients. , 2006, The Journal of chemical physics.

[95]  A. Hesselmann Derivation of the dispersion energy as an explicit density- and exchange-hole functional. , 2009, The Journal of chemical physics.

[96]  J. Bernstein,et al.  Facts and fictions about polymorphism. , 2015, Chemical Society reviews.

[97]  Jae Shin Lee,et al.  Accurate ab initio binding energies of the benzene dimer. , 2006, The journal of physical chemistry. A.

[98]  A. Tkatchenko,et al.  Materials perspective on Casimir and van der Waals interactions , 2015, 1509.03338.

[99]  D. J. Carter,et al.  Benchmarking Calculated Lattice Parameters and Energies of Molecular Crystals Using van der Waals Density Functionals. , 2014, Journal of chemical theory and computation.

[100]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[101]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[102]  J. Perdew,et al.  Accurate van der Waals coefficients from density functional theory , 2011, Proceedings of the National Academy of Sciences.

[103]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[104]  Andreas Görling,et al.  Random phase approximation correlation energies with exact Kohn–Sham exchange , 2010 .

[105]  Lasse Jensen,et al.  Atomistic Electrodynamics Model for Optical Properties of Silver Nanoclusters , 2009 .

[106]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[107]  Alexandre Tkatchenko,et al.  Popular Kohn-Sham density functionals strongly overestimate many-body interactions in van der Waals systems , 2008 .

[108]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[109]  B. Nijboer,et al.  Microscopic derivation of macroscopic Van der Waals forces , 1967 .

[110]  M. Gillan,et al.  Perspective: How good is DFT for water? , 2016, The Journal of chemical physics.

[111]  A. Tkatchenko,et al.  Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces. , 2014, The Journal of chemical physics.

[112]  John P. Perdew,et al.  DENSITY-FUNCTIONAL CORRECTION OF RANDOM-PHASE-APPROXIMATION CORRELATION WITH RESULTS FOR JELLIUM SURFACE ENERGIES , 1999 .

[113]  A. Tkatchenko,et al.  Scaling laws for van der Waals interactions in nanostructured materials , 2013, Nature Communications.

[114]  A. Becke,et al.  A density-functional model of the dispersion interaction. , 2005, The Journal of chemical physics.

[115]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in density functional theory using Wannier functions. , 2009, The journal of physical chemistry. A.

[116]  Alexandre Tkatchenko,et al.  Collective many-body van der Waals interactions in molecular systems , 2012, Proceedings of the National Academy of Sciences.

[117]  G. DiLabio,et al.  Accurate treatment of van der Waals interactions using standard density functional theory methods with effective core-type potentials: Application to carbon-containing dimers , 2008 .

[118]  Mariana Rossi,et al.  Stability of Complex Biomolecular Structures: van der Waals, Hydrogen Bond Cooperativity, and Nuclear Quantum Effects. , 2015, The journal of physical chemistry letters.

[119]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[120]  M. Jarrold,et al.  Extreme Stability of an Unsolvated α-Helix , 2004 .

[121]  Alexandre Tkatchenko,et al.  Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems. , 2014, The journal of physical chemistry letters.

[122]  T. Björkman Testing several recent van der Waals density functionals for layered structures. , 2014, The Journal of chemical physics.

[123]  A. Tkatchenko,et al.  Density-functional theory with screened van der Waals interactions applied to atomic and molecular adsorbates on close-packed and non-close-packed surfaces , 2016 .

[124]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[125]  T. Bučko,et al.  C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table. , 2016, Journal of chemical theory and computation.

[126]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[127]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[128]  A. Tkatchenko,et al.  Role of methyl-induced polarization in ion binding , 2013, Proceedings of the National Academy of Sciences.

[129]  S. Soubatch,et al.  Structure and energetics of azobenzene on Ag(111): benchmarking semiempirical dispersion correction approaches. , 2010, Physical review letters.

[130]  P. Silvestrelli Improvement in hydrogen bond description using van der Waals-corrected DFT: The case of small water clusters , 2009 .

[131]  J F Dobson,et al.  Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. , 2010, Physical review letters.

[132]  Á. Pérez‐Jiménez,et al.  Determining the cohesive energy of coronene by dispersion-corrected DFT methods: periodic boundary conditions vs. molecular pairs. , 2015, The Journal of chemical physics.

[133]  Local representation of the electronic dielectric response function , 2015, 1508.03563.

[134]  Pemra Doruker,et al.  Protein-Ligand Complexes as Constrained Dynamical Systems , 2019, J. Chem. Inf. Model..

[135]  James F. Babb Empirically constructed dynamic electric dipole polarizability function of magnesium and its applications , 2015, 1508.01986.

[136]  L. M. Woods,et al.  Many-Body van der Waals Interactions between Graphitic Nanostructures , 2010 .

[137]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[138]  J. Dobson Beyond pairwise additivity in London dispersion interactions , 2014 .

[139]  Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals. , 2005, Physical review letters.

[140]  Erin R. Johnson,et al.  Dispersion Interactions in Density‐Functional Theory , 2010 .

[141]  Binding energies in benzene dimers: Nonlocal density functional calculations. , 2005, The Journal of chemical physics.

[142]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[143]  Yan Li,et al.  Ab initio calculation of van der Waals bonded molecular crystals. , 2009, Physical review letters.

[144]  S. Tsuzuki,et al.  Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. , 2002, Journal of the American Chemical Society.

[145]  Krzysztof Szalewicz,et al.  Symmetry‐adapted perturbation theory of intermolecular forces , 2012 .

[146]  F. Toigo,et al.  Van der Waals interactions at surfaces by density functional theory using Wannier functions. , 2008, The Journal of chemical physics.

[147]  K. L. Hunt,et al.  Nonlocal polarizability density of a model system: A homogeneous electron gas at T=0 , 1993 .

[148]  J. VandeVondele,et al.  Correction to "Bulk Liquid Water at Ambient Temperature and Pressure from MP2 Theory". , 2013, The journal of physical chemistry letters.

[149]  G. Starkschall,et al.  Calculation of Coefficients in the Power Series Expansion of the Long‐Range Dispersion Force between Atoms , 1972 .

[150]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[151]  Pavel Hobza,et al.  Potential Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures: T-Shaped and Parallel-Displaced , 1996 .

[152]  Alexandre Tkatchenko,et al.  Seamless and Accurate Modeling of Organic Molecular Materials. , 2013, The journal of physical chemistry letters.

[153]  K. Reuter,et al.  Communication: Charge-population based dispersion interactions for molecules and materials. , 2016, The Journal of chemical physics.

[154]  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[155]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional made simple. , 2009, Physical review letters.

[156]  G. Galli,et al.  Nature and strength of interlayer binding in graphite. , 2009, Physical review letters.

[157]  A. Tkatchenko Current Understanding of Van der Waals Effects in Realistic Materials , 2015 .

[158]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[159]  Georg Kresse,et al.  Graphene on Ni(111): Strong interaction and weak adsorption , 2011 .

[160]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[161]  David Pines,et al.  Elementary Excitations In Solids , 1964 .

[162]  R. Nieminen,et al.  Linear-scaling self-consistent implementation of the van der Waals density functional , 2009 .

[163]  Thomas Olsen,et al.  Extending the random-phase approximation for electronic correlation energies: The renormalized adiabatic local density approximation , 2012, 1208.0419.

[164]  G. Scuseria,et al.  Van der Waals coefficients beyond the classical shell model. , 2015, The Journal of chemical physics.

[165]  P. Żuchowski,et al.  Density functional theory approach to noncovalent interactions via monomer polarization and Pauli blockade. , 2009, Physical review letters.

[166]  I. Hamada,et al.  Comparative van der Waals density-functional study of graphene on metal surfaces , 2010 .

[167]  Donald G. Truhlar,et al.  Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation , 2011 .

[168]  Walter Kohn NEARSIGHTEDNESS OF ELECTRONIC MATTER , 2008 .

[169]  J. Murray,et al.  Polarizability and volume , 1993 .

[170]  Katrin Tonigold,et al.  Adsorption of small aromatic molecules on the (111) surfaces of noble metals: A density functional theory study with semiempirical corrections for dispersion effects. , 2010, The Journal of chemical physics.

[171]  Alexandre Tkatchenko,et al.  Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. , 2010, Physical review letters.

[172]  C David Sherrill,et al.  Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes. , 2011, Journal of chemical theory and computation.

[173]  J. Nørskov,et al.  Ab initio van der waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like. , 2011, The journal of physical chemistry. B.

[174]  A. Mayer Formulation in terms of normalized propagators of a charge-dipole model enabling the calculation of the polarization properties of fullerenes and carbon nanotubes , 2007 .

[175]  Andreas Görling,et al.  Exact exchange kernel for time‐dependent density‐functional theory , 1998 .

[176]  F. Gygi,et al.  Structural and Vibrational Properties of Liquid Water from van der Waals Density Functionals. , 2011, Journal of chemical theory and computation.

[177]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[178]  A. Tkatchenko,et al.  First‐principles modeling of molecular crystals: structures and stabilities, temperature and pressure , 2017 .

[179]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[180]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[181]  T. Bučko,et al.  Improved Density Dependent Correction for the Description of London Dispersion Forces. , 2013, Journal of chemical theory and computation.

[182]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[183]  H. Eshuis,et al.  Electron correlation methods based on the random phase approximation , 2012, Theoretical Chemistry Accounts.

[184]  J. Mitroy,et al.  Long-range dispersion interactions. II. Alkali-metal and rare-gas atoms , 2007 .

[185]  W. Bade Drude‐Model Calculation of Dispersion Forces. I. General Theory , 1957 .

[186]  A. Tkatchenko,et al.  Many-body dispersion effects in the binding of adsorbates on metal surfaces. , 2015, The Journal of chemical physics.

[187]  R O Jones,et al.  The surface energy of a bounded electron gas , 1974 .

[188]  Claudia Ambrosch-Draxl,et al.  Van der Waals Interactions Between Organic Adsorbates and at Organic/Inorganic Interfaces , 2010 .

[189]  Axel D. Becke,et al.  On the large‐gradient behavior of the density functional exchange energy , 1986 .

[190]  A. Tkatchenko,et al.  Electronic properties of molecules and surfaces with a self-consistent interatomic van der Waals density functional. , 2015, Physical review letters.

[191]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[192]  T. Van Voorhis,et al.  Implementation and assessment of a simple nonlocal van der Waals density functional. , 2010, The Journal of chemical physics.

[193]  Hiromi Nakai,et al.  Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. , 2009, The Journal of chemical physics.

[194]  T. Van Voorhis,et al.  Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism. , 2009, The Journal of chemical physics.

[195]  Scott L Cockroft,et al.  How much do van der Waals dispersion forces contribute to molecular recognition in solution? , 2013, Nature chemistry.

[196]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[197]  C. Dellago,et al.  Autoionization in Liquid Water , 2001, Science.

[198]  C. Baldauf,et al.  Going clean: structure and dynamics of peptides in the gas phase and paths to solvation , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[199]  M. Holz,et al.  Isotope effect on the translational and rotational motion in liquid water and ammonia , 2001 .

[200]  A. Tkatchenko,et al.  Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. , 2014, Physical review letters.

[201]  J. Olsen,et al.  Polarizabilities and first hyperpolarizabilities of HF, Ne, and BH from full configuration interaction and coupled cluster calculations , 1999 .

[202]  A. Ambrosetti,et al.  Adsorption of Rare-Gas Atoms and Water on Graphite and Graphene by van der Waals-Corrected Density Functional Theory , 2011 .

[203]  Communication: Beyond the random phase approximation on the cheap: improved correlation energies with the efficient "radial exchange hole" kernel. , 2012, The Journal of chemical physics.

[204]  J. VandeVondele,et al.  Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. , 2013, Journal of chemical theory and computation.

[205]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in DFT made easy by Wannier functions. , 2007, Physical review letters.

[206]  Richard L. Jaffe,et al.  A quantum chemistry study of benzene dimer , 1996 .

[207]  T. Bučko,et al.  Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning. , 2014, The Journal of chemical physics.

[208]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[209]  D. Matthews,et al.  Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy , 2014, Science.

[210]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. , 2006, The Journal of chemical physics.

[211]  Thomas R. Furlani,et al.  Efficient computation of the dispersion interaction with density-functional theory , 2009 .

[212]  A. D. Boese,et al.  Density functional theory and hydrogen bonds: are we there yet? , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[213]  W. Reckien,et al.  Theoretical study of the adsorption of benzene on coinage metals , 2014, Beilstein journal of organic chemistry.

[214]  Axel D. Becke,et al.  van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes , 2010 .

[215]  R. Car,et al.  Simulation of electrocatalytic hydrogen production by a bioinspired catalyst anchored to a pyrite electrode. , 2010, Journal of the American Chemical Society.

[216]  J. Crain,et al.  Electronically coarse-grained model for water. , 2013, Physical review letters.

[217]  A. Tkatchenko,et al.  van der Waals dispersion interactions in molecular materials: beyond pairwise additivity , 2015, Chemical science.

[218]  A. Tkatchenko,et al.  Structure and energetics of benzene adsorbed on transition-metal surfaces: density-functional theory with van der Waals interactions including collective substrate response , 2013 .

[219]  Valentino R. Cooper,et al.  Van der Waals density functional: an appropriate exchange functional , 2009, 0910.1250.

[220]  Michael F. Peintinger,et al.  Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. , 2013, The journal of physical chemistry. A.

[221]  C. G. D. Kruif,et al.  Vapor pressures and lattice energies of oxalic acid, mesotartaric acid, phloroglucinol, myoinositol, and their hydrates , 1983 .

[222]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[223]  S. Grimme,et al.  A DFT-D study of structural and energetic properties of TiO2 modifications , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[224]  K. Jordan,et al.  Correcting density functionals for dispersion interactions using pseudopotentials , 2014 .

[225]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[226]  A. Tkatchenko,et al.  Quantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals. , 2015, Physical review letters.

[227]  G. Vignale,et al.  How many-body effects modify the van der Waals interaction between graphene sheets , 2013, 1306.4716.

[228]  Robert M Parrish,et al.  Communication: Practical intramolecular symmetry adapted perturbation theory via Hartree-Fock embedding. , 2015, The Journal of chemical physics.

[229]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[230]  M. Scheffler,et al.  Validation challenge of density-functional theory for peptides-example of Ac-Phe-Ala5-LysH(+). , 2014, The journal of physical chemistry. A.

[231]  A. Görling,et al.  Efficient self-consistent treatment of electron correlation within the random phase approximation. , 2013, The Journal of chemical physics.

[232]  K. Mikkelsen,et al.  Polarizability of molecular clusters as calculated by a dipole interaction model , 2002 .

[233]  P. Fowler,et al.  The polarizabilities and dispersion coefficients for ions in the solid group IV oxides , 1994 .

[234]  Bradley P. Dinte,et al.  Constraint satisfaction in local and gradient susceptibility approximations: Application to a van der Waals density functional. , 1996, Physical review letters.

[235]  Luiz N. Oliveira,et al.  Comparative study of van der Waals corrections to the bulk properties of graphite , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[236]  Emilio Artacho,et al.  Density, structure, and dynamics of water: the effect of van der Waals interactions. , 2010, The Journal of chemical physics.

[237]  Thomas M Henderson,et al.  The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. , 2008, The Journal of chemical physics.

[238]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[239]  J. Crain,et al.  Quantum Drude oscillator model of atoms and molecules: many-body polarization and dispersion interactions for atomistic simulation. , 2013 .

[240]  A. Seitsonen,et al.  Importance of van der Waals interactions in liquid water. , 2009, The journal of physical chemistry. B.

[241]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[242]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[243]  B. Rozitis,et al.  Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA , 2014, Nature.

[244]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[245]  Matthias Scheffler,et al.  Random-phase approximation and its applications in computational chemistry and materials science , 2012, Journal of Materials Science.

[246]  Andreas Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004 .

[247]  Kyuho Lee,et al.  Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules. , 2009, Journal of chemical theory and computation.

[248]  K. L. Hunt Dispersion dipoles and dispersion forces: Proof of Feynman’s ‘‘conjecture’’ and generalization to interacting molecules of arbitrary symmetry , 1990 .

[249]  I. Hamada van der Waals density functional made accurate , 2014 .

[250]  Stefan Grimme,et al.  Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes. , 2015, Journal of chemical theory and computation.

[251]  A. Becke,et al.  Exchange holes in inhomogeneous systems: A coordinate-space model. , 1989, Physical review. A, General physics.

[252]  Mark E Tuckerman,et al.  Ab initio molecular dynamics study of water at constant pressure using converged basis sets and empirical dispersion corrections. , 2012, The Journal of chemical physics.

[253]  F. Müller,et al.  Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions. , 2012, Advances in colloid and interface science.

[254]  C. Corminboeuf,et al.  How important is self-consistency for the dDsC density dependent dispersion correction? , 2014, The Journal of chemical physics.

[255]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[256]  Claudia Ambrosch-Draxl,et al.  Importance of van der Waals interaction for organic molecule-metal junctions: adsorption of thiophene on Cu(110) as a prototype. , 2007, Physical review letters.

[257]  A. Tkatchenko,et al.  Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. , 2014, Accounts of chemical research.

[258]  H. Frauenfelder The Secondary Structure , 2010 .

[259]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[260]  C. Corminboeuf,et al.  A generalized-gradient approximation exchange hole model for dispersion coefficients. , 2011, The Journal of chemical physics.

[261]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[262]  Thomas Olsen,et al.  The random phase approximation applied to solids, molecules, and graphene-metal interfaces: From weak to strong binding regimes , 2012, 1211.6873.

[263]  A. Tkatchenko,et al.  Non-additivity of molecule-surface van der Waals potentials from force measurements , 2014, Nature Communications.

[264]  J. Perdew,et al.  Van der waals coefficients for nanostructures: fullerenes defy conventional wisdom. , 2012, Physical review letters.

[265]  T. Van Voorhis,et al.  Self-consistent implementation of a nonlocal van der Waals density functional with a Gaussian basis set. , 2008, The Journal of chemical physics.

[266]  A. Michaelides,et al.  Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. , 2014, Nano letters.

[267]  B. Rice,et al.  Predicting structure of molecular crystals from first principles. , 2008, Physical review letters.

[268]  G. Mahan Van der Waals Forces in Solids , 1965 .

[269]  A. Otero-de-la-Roza,et al.  Predicting Energetics of Supramolecular Systems Using the XDM Dispersion Model. , 2015, Journal of chemical theory and computation.

[270]  János G. Ángyán,et al.  Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach. , 2011, Journal of chemical theory and computation.

[271]  Thomas F. Miller,et al.  Linear-Response Time-Dependent Embedded Mean-Field Theory. , 2017, Journal of chemical theory and computation.

[272]  P. Nachtigall,et al.  Investigation of the benzene-dimer potential energy surface: DFT/CCSD(T) correction scheme. , 2008, The Journal of chemical physics.

[273]  C. Corminboeuf,et al.  Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. , 2011, Journal of chemical theory and computation.

[274]  K. Szalewicz,et al.  Is electrostatics sufficient to describe hydrogen-bonding interactions? , 2014, Chemistry.

[275]  T. Bučko,et al.  Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[276]  G. Beran,et al.  Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods. , 2015, Journal of chemical theory and computation.

[277]  A. Tkatchenko,et al.  Electronic structure and van der Waals interactions in the stability and mobility of point defects in semiconductors. , 2013, Physical review letters.

[278]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[279]  P. Geerlings,et al.  Importance of anisotropy in the evaluation of dispersion interactions , 2011 .

[280]  P. Ayers A perspective on the link between the exchange(-correlation) hole and dispersion forces , 2009 .

[281]  D. Scheeres,et al.  Scaling forces to asteroid surfaces: The role of cohesion , 2010, 1002.2478.

[282]  A. Thakkar Higher dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems , 1988 .

[283]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[284]  A. Lucas Collective contributions to the long-range dipolar interaction in rare-gas crystals , 1967 .

[285]  Henrik Rydberg,et al.  Van der Waals Density Functional Theory with Applications , 2005 .

[286]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[287]  A. Tkatchenko,et al.  Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. , 2013, The Journal of chemical physics.

[288]  D. Stradi,et al.  Role of dispersion forces in the structure of graphene monolayers on Ru surfaces. , 2011, Physical review letters.

[289]  A. Stone,et al.  Anomalous nonadditive dispersion interactions in systems of three one-dimensional wires , 2013, 1308.1557.

[290]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[291]  A. Donchev,et al.  Many-body effects of dispersion interaction. , 2006, The Journal of chemical physics.

[292]  Troy Van Voorhis,et al.  Benchmark Assessment of the Accuracy of Several van der Waals Density Functionals. , 2012, Journal of chemical theory and computation.

[293]  O. A. von Lilienfeld,et al.  Weakly Bonded Complexes of Aliphatic and Aromatic Carbon Compounds Described with Dispersion Corrected Density Functional Theory. , 2007, Journal of chemical theory and computation.

[294]  A. Alavi,et al.  Dispersion interactions between semiconducting wires , 2010, 1005.1332.

[295]  T. Bučko,et al.  Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids , 2013 .

[296]  A. H. Kahn,et al.  Electronic Polarizabilities of Ions in Crystals , 1953 .

[297]  Jason E Hein,et al.  Predicting the relative solubilities of racemic and enantiopure crystals by density-functional theory. , 2014, Angewandte Chemie.

[298]  Pavel Hobza,et al.  Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules. , 2012, Journal of chemical theory and computation.

[299]  Nathan Wiser,et al.  Dielectric Constant with Local Field Effects Included , 1963 .

[300]  R. Feynman Forces in Molecules , 1939 .

[301]  A. Otero-de-la-Roza,et al.  Van der Waals interactions in solids using the exchange-hole dipole moment model. , 2012, The Journal of chemical physics.

[302]  A. Tkatchenko,et al.  Many-body van der Waals interactions in molecules and condensed matter , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[303]  K. Berland,et al.  van der Waals forces in density functional theory: a review of the vdW-DF method , 2014, Reports on progress in physics. Physical Society.

[304]  Mariana Rossi,et al.  Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H(+)vs. Ac-Lys-Ala19 + H(+) and the current reach of DFT. , 2015, Physical chemistry chemical physics : PCCP.

[305]  Jonah Z. Vilseck,et al.  Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning , 2016, Journal of chemical theory and computation.

[306]  A. Tkatchenko,et al.  Van der Waals interactions in ionic and semiconductor solids. , 2011, Physical review letters.

[307]  G. Rance,et al.  van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. , 2010, ACS nano.

[308]  J. Ángyán On the exchange-hole model of London dispersion forces. , 2007, The Journal of chemical physics.

[309]  J. Kirkwood,et al.  Drude‐Model Calculation of Dispersion Forces. II. The Linear Lattice , 1957 .

[310]  K. Autumn,et al.  Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition , 2013, Journal of The Royal Society Interface.

[311]  Roberto Car,et al.  The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. , 2014, The Journal of chemical physics.

[312]  A. D. McLACHLAN,et al.  Time-Dependent Hartree—Fock Theory for Molecules , 1964 .

[313]  John P. Perdew,et al.  Exchange-correlation energy of a metallic surface: Wave-vector analysis , 1977 .

[314]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[315]  G. Beran Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. , 2016, Chemical reviews.

[316]  E. Johnson Dependence of dispersion coefficients on atomic environment. , 2011, The Journal of chemical physics.

[317]  Tristan Bereau,et al.  Toward transferable interatomic van der Waals interactions without electrons: the role of multipole electrostatics and many-body dispersion. , 2014, The Journal of chemical physics.

[318]  M. Head‐Gordon,et al.  On the T-shaped structures of the benzene dimer , 2007 .

[319]  A. Mostofi,et al.  Calculating dispersion interactions using maximally localized Wannier functions. , 2011, The Journal of chemical physics.

[320]  A. Otero-de-la-Roza,et al.  A benchmark for non-covalent interactions in solids. , 2012, The Journal of chemical physics.

[321]  W. Kohn,et al.  Van der Waals interaction between an atom and a solid surface , 1976 .

[322]  Jason Crain,et al.  Signature properties of water: Their molecular electronic origins , 2015, Proceedings of the National Academy of Sciences.

[323]  J. Alonso,et al.  Long-Range van der Waals Interactions in Density Functional Theory , 2007 .

[324]  F. Ancilotto,et al.  Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals corrected density functional theory , 2011, 1112.5056.

[325]  M. Sullivan,et al.  Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory. , 2012, The Journal of chemical physics.

[326]  I. Hamada,et al.  First-principles study of benzene on noble metal surfaces: Adsorption states and vacuum level shifts , 2009 .

[327]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[328]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[329]  P. Schreiner,et al.  London dispersion in molecular chemistry--reconsidering steric effects. , 2015, Angewandte Chemie.

[330]  Steven G. Johnson,et al.  The Casimir effect in microstructured geometries , 2011 .

[331]  Masuhiro Mikami,et al.  Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T) calculations , 2000 .

[332]  A. Hesselmann Long-range correlation energies from frequency-dependent weighted exchange-hole dipole polarisabilities. , 2012, The Journal of chemical physics.

[333]  Clemence Corminboeuf,et al.  A System-Dependent Density-Based Dispersion Correction. , 2010, Journal of chemical theory and computation.

[334]  M. Head‐Gordon,et al.  Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. , 2015, The Journal of chemical physics.

[335]  K. Berland,et al.  Interpretation of van der Waals density functionals , 2014, 1408.2075.

[336]  Joost VandeVondele,et al.  Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. , 2009, The journal of physical chemistry. B.

[337]  A. Tkatchenko,et al.  Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. , 2011, Journal of chemical theory and computation.

[338]  S. Grimme,et al.  DFT-D3 Study of Some Molecular Crystals , 2014 .