Dual-Polarization Ku-Band Compact Spaceborne Antenna Based on Dual-Reflectarray Optics †

This article demonstrated an accurate analysis technique for dual-reflectarray antennas that take into account the angle of incidence of the impinging electric field on the main reflectarray cells. The reflected field on the sub and the main reflectarray surfaces is computed using Method of Moments in the spectral domain and assuming local periodicity. The sub-reflectarray is divided into groups of elements and the field radiated by each group is used to compute the incident and reflected field on the main reflectarray cells. A 50-cm demonstrator in Ku-band that provides European coverage has been designed, manufactured and tested to validate the analysis technique. The measured radiation patterns match the simulations and they fulfill the coverage requirements, achieving a cross-polar discrimination better than 25 dB in the frequency range: 12.975–14.25 GHz.

[1]  J. A. Encinar,et al.  94 GHz Dual-Reflector Antenna With Reflectarray Subreflector , 2009, IEEE Transactions on Antennas and Propagation.

[2]  M. Cuhaci,et al.  A broadband reflectarray antenna with double square rings , 2006 .

[3]  Fan Yang,et al.  Broadband Reflectarray Antennas Using Double-Layer Subwavelength Patch Elements , 2010, IEEE Antennas and Wireless Propagation Letters.

[4]  E. Labiole,et al.  A 1.3 m facetted reflectarray in Ku band , 2012, 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics.

[5]  W. Menzel,et al.  A 76 GHz multiple-beam planar reflector antenna , 2002, 2002 32nd European Microwave Conference.

[6]  Wolfgang Menzel,et al.  Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology , 2015, IEEE Transactions on Antennas and Propagation.

[7]  G. Toso,et al.  A Transmit-Receive Reflectarray Antenna for Direct Broadcast Satellite Applications , 2011, IEEE Transactions on Antennas and Propagation.

[8]  J. Encinar,et al.  Design, Manufacturing and Test of a Dual-Reflectarray Antenna With Improved Bandwidth and Reduced Cross-Polarization , 2013, IEEE Transactions on Antennas and Propagation.

[9]  Giorgio Franceschetti,et al.  Intersection approach to array pattern synthesis , 1990 .

[10]  D. Pozar Bandwidth of reflectarrays , 2003 .

[11]  Erik Jorgensen,et al.  Direct Optimization of Printed Reflectarrays for Contoured Beam Satellite Antenna Applications , 2013, IEEE Transactions on Antennas and Propagation.

[12]  M. Okoniewski,et al.  Realizing an electronically tunable reflectarray using varactor diode-tuned elements , 2005, IEEE Microwave and Wireless Components Letters.

[13]  J. Encinar Design of two-layer printed reflectarrays using patches of variable size , 2001 .

[14]  David M. Pozar,et al.  A shaped-beam microstrip patch reflectarray , 1999 .

[15]  Min Zhou,et al.  New modelling capabilities in commercial software for high-gain antennas , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[16]  Yahya Rahmat-Samii,et al.  Radiation Characteristics of Reflectarray Antennas: Methodologies and Applications to Dual Configurations , 2006 .

[17]  T. Akin,et al.  Beam Switching Reflectarray Monolithically Integrated With RF MEMS Switches , 2012, IEEE Transactions on Antennas and Propagation.

[18]  Andreas Reigber,et al.  Reflectarray membrane study for deployable SAR antenna , 2009, 2009 3rd European Conference on Antennas and Propagation.

[19]  Giovanni Toso,et al.  Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band , 2013, IEEE Transactions on Antennas and Propagation.

[20]  Fan Yang,et al.  A 1600-Element Dual-Frequency Electronically Reconfigurable Reflectarray at X/Ku-Band , 2017, IEEE Transactions on Antennas and Propagation.

[21]  Rolf Jakoby,et al.  Electronically reconfigurable reflectarrays with nematic liquid crystals , 2006 .

[22]  A.K. Skrivervik,et al.  Monolithic MEMS-Based Reflectarray Cell Digitally Reconfigurable Over a 360 $^{\circ }$ Phase Range , 2008, IEEE Antennas and Wireless Propagation Letters.

[23]  Giovanni Toso,et al.  Analysis of a dual-reflect array antenna , 2011 .

[24]  Y. Rahmat-Samii,et al.  Subreflectarrays for Reflector Surface Distortion Compensation , 2009, IEEE Transactions on Antennas and Propagation.

[25]  John Huang,et al.  Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[26]  J. Encinar,et al.  Bandwidth Improvement in Large Reflectarrays by Using True-Time Delay , 2008, IEEE Transactions on Antennas and Propagation.

[27]  C. Menudier,et al.  Sub-Reflectarrays Performances for Reconfigurable Coverages , 2012, IEEE Transactions on Antennas and Propagation.

[28]  M. Riel,et al.  Design of an Electronically Beam Scanning Reflectarray Using Aperture-Coupled Elements , 2007, IEEE Transactions on Antennas and Propagation.

[29]  Roberto Sorrentino MEMS-Based Reconfigurable Reflectarrays , 2007 .

[30]  Clive Parini,et al.  Spherical near-field antenna measurements , 2014, Theory and Practice of Modern Antenna Range Measurements, 2nd Expanded Edition, Volume 2.