A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy

This work presents a simple finite element implementation of a geometrically exact and fully nonlinear Kirchhoff–Love shell model. Thus, the kinematics are based on a deformation gradient written in terms of the first- and second-order derivatives of the displacements. The resulting finite element formulation provides $$C^1$$C1-continuity using a penalty approach, which penalizes the kinking at the edges of neighboring elements. This approach enables the application of well-known $$C^0$$C0-continuous interpolations for the displacements, which leads to a simple finite element formulation, where the only unknowns are the nodal displacements. On the basis of polyconvex strain energy functions, the numerical framework for the simulation of isotropic and anisotropic thin shells is presented. A consistent plane stress condition is incorporated at the constitutive level of the model. A triangular finite element, with a quadratic interpolation for the displacements and a one-point integration for the enforcement of the $$C^1$$C1-continuity at the element interfaces leads to a robust shell element. Due to the simple nature of the element, even complex geometries can be meshed easily, which include folded and branched shells. The reliability and flexibility of the element formulation is shown in a couple of numerical examples, including also time dependent boundary value problems. A plane reference configuration is assumed for the shell mid-surface, but initially curved shells can be accomplished if one regards the initial configuration as a stress-free deformed state from the plane position, as done in previous works.

[1]  Daniel Balzani,et al.  Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls , 2010 .

[2]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[3]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[4]  Jörg Schröder,et al.  Poly-, quasi- and rank-one convexity in applied mechanics , 2010 .

[5]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[6]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[7]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[8]  M. Arroyo,et al.  Thin shell analysis from scattered points with maximum‐entropy approximants , 2010, International Journal for Numerical Methods in Engineering.

[9]  Y. Başar,et al.  Incompressibility at large strains and finite-element implementation , 2004 .

[10]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[11]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[12]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[13]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[14]  Peter Wriggers,et al.  Automation of Finite Element Methods , 2016 .

[15]  P. Wriggers,et al.  An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells , 2011 .

[16]  P. Pimenta,et al.  Meshless implementation of the geometrically exact Kirchhoff–Love shell theory , 2014 .

[17]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[18]  S. Antman Nonlinear problems of elasticity , 1994 .

[19]  E. Campello,et al.  Finite Element analysis of the wrinkling of orthotropic membranes , 2006 .

[20]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[21]  Daniel Balzani,et al.  Construction of anisotropic polyconvex energies and applications to thin shells , 2009 .

[22]  J. Boehler,et al.  A Simple Derivation of Representations for Non‐Polynomial Constitutive Equations in Some Cases of Anisotropy , 1979 .

[23]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[24]  Giles Thomas,et al.  A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners , 2007 .

[25]  M. Arroyo,et al.  Nonlinear manifold learning for meshfree finite deformation thin‐shell analysis , 2013 .

[26]  P. Neff,et al.  Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors , 2008 .

[27]  Reint Boer,et al.  Vektor- und Tensorrechnung für Ingenieure , 1982 .

[28]  Daniel Balzani,et al.  Analysis of thin shells using anisotropic polyconvex energy densities , 2008 .

[29]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[30]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[31]  Jörg Schröder,et al.  Anisotropie polyconvex energies , 2010 .

[32]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[33]  Natalie Stranghöner,et al.  Membranstrukturen mit nicht-linearem anisotropem Materialverhalten - Aspekte der Materialprüfung und der numerischen Simulation , 2011 .

[34]  Joze Korelc,et al.  Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions , 1997, Theor. Comput. Sci..

[35]  Joze Korelc,et al.  Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes , 2002, Engineering with Computers.

[36]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[37]  J. P. Boehler,et al.  Introduction to the Invariant Formulation of Anisotropic Constitutive Equations , 1987 .

[38]  Sergio Pellegrino,et al.  Nonlinear dynamic analysis of creased shells , 2016 .

[39]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[40]  Rogelio Ortigosa,et al.  On a tensor cross product based formulation of large strain solid mechanics , 2016 .

[41]  Yavuz Başar,et al.  Shear deformation models for large-strain shell analysis , 1997 .

[42]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[43]  E. Campello,et al.  A Fully Nonlinear Thin Shell Model of Kirchhoff-Love Type , 2010 .

[44]  Carlo Sansour,et al.  Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements , 2000 .

[45]  E. Campello,et al.  Shell curvature as an initial deformation: A geometrically exact finite element approach , 2009 .

[46]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[47]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[48]  P. Pimenta,et al.  Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff-Love shell model , 2015 .

[49]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[50]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[51]  M. Mukhopadhyay,et al.  Finite element large deflection static analysis of shallow and deep stiffened shells , 1999 .

[52]  Jörg Schröder,et al.  Construction of polyconvex, anisotropic free‐energy functions , 2003 .