Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers

In recent years we have witnessed critical advances in the applications of molecular markers for genetic fingerprinting in cultivated plants. Their advantages have been widely recognised but they are even more important in woody perennials due to some particularities of these species such as their long generation time, their large individual size and their vegetative propagation. In this review, the information so far published in molecular fingerprinting of temperate fruit tree species using DNA markers is analysed with the goal of obtaining a common ground that will allow an easier and faster genetic identification that, at the same time, has to be reproducible among laboratories.

[1]  M. Vicente,et al.  RFLP variability in apricot (Prunus armeniaca L.) , 1998 .

[2]  J. Hormaza,et al.  Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats , 2002, Theoretical and Applied Genetics.

[3]  P. Keim,et al.  Allele-specific hybridization markers for soybean , 1999, Theoretical and Applied Genetics.

[4]  J. Leitão,et al.  Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers , 2000, Genetic Resources and Crop Evolution.

[5]  R. Varshney,et al.  The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat , 2000, Euphytica.

[6]  J. Hormaza,et al.  Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers , 1998, Euphytica.

[7]  S. Hokanson,et al.  Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids , 2001, Euphytica.

[8]  A. Iezzoni,et al.  DNA Fingerprinting of Tetraploid Cherry Germplasm Using Simple Sequence Repeats , 2001 .

[9]  S. Hokanson,et al.  Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus×domestica borkh. core subset collection , 1998, Theoretical and Applied Genetics.

[10]  R. Michelmore,et al.  Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Bassett,et al.  Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification , 1997, Theoretical and Applied Genetics.

[12]  F. Cellini,et al.  Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. , 1995, Nucleic acids research.

[13]  M. Morgante,et al.  Microsatellite DNA in Actinidia chinensis: isolation, characterisation, and homology in related species , 1998, Theoretical and Applied Genetics.

[14]  D. Labuda,et al.  Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. , 1994, Genomics.

[15]  H. Nybom DNA Fingerprints in Sports of `Red Delicious' Apples , 1990 .

[16]  C. McGregor,et al.  A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm , 2000, Euphytica.

[17]  M. Litt,et al.  A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. , 1989, American journal of human genetics.

[18]  R. Testolin,et al.  AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus , 1999, Theoretical and Applied Genetics.

[19]  A. Casas,et al.  Genetic diversity of Prunus rootstocks analyzed by RAPD markers , 1999, Euphytica.

[20]  R. Michelmore,et al.  Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce , 1993, Theoretical and Applied Genetics.

[21]  A. Belaj,et al.  Polymorphism and Discrimination Capacity of Randomly Amplified Polymorphic Markers in an Olive Germplasm Bank , 2001 .

[22]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[23]  G. Reighard,et al.  Identification of Peach Rootstock Cultivars by RAPD Markers , 1996 .

[24]  L. Goulao,et al.  Molecular typing of Pyrus based on RAPD markers , 1999 .

[25]  T. Shimada,et al.  Classification of mume (Prunus mume Sieb. et Zucc.) by RAPD assay , 1994 .

[26]  G. Volckaert,et al.  Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories , 2004, Molecular Breeding.

[27]  D. Parfitt,et al.  Genetic Relationships and Characterization of Persian Walnut (Juglans regia L.) Cultivars Using Restriction Fragment Length Polymorphisms (RFLPs) , 1994 .

[28]  S. Tanksley,et al.  RFLP Mapping in Plant Breeding: New Tools for an Old Science , 1989, Bio/Technology.

[29]  J. Hormaza,et al.  Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis , 1994, Theoretical and Applied Genetics.

[30]  G. Dorado,et al.  Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.) , 2000, Theoretical and Applied Genetics.

[31]  M. Badenes,et al.  Molecular Characterization of Olive Cultivars Using RAPD Markers , 2001 .

[32]  G. Graham,et al.  The use of the PCR-RAPD technique in improving the plant variety rights description of a new Queensland apple (Malus domestica) cultivar , 1994 .

[33]  B. Quebedeaux,et al.  Molecular Characterization of Common Olive Varieties in Israel and the West Bank Using Randomly Amplified Polymorphic DNA (RAPD) Markers , 1998 .

[34]  F. Dunemann Molecular classification of Malus with RAPD markers , 1994 .

[35]  R. Ball,et al.  Genetic Diversity and Relationships in Malus sp. Germplasm Collections as Determined by Randomly Amplified Polymorphic DNA , 2001 .

[36]  T. Shimada,et al.  Genetic diversity of plums characterized by random amplified polymorphic DNA (RAPD) analysis , 1999, Euphytica.

[37]  E. Ritter,et al.  Analysis of plum cultivars with RAPD markers , 1997 .

[38]  T. Gradziel,et al.  Genetic Characterization and Relatedness among California Almond Cultivars and Breeding Lines Detected by Randomly Amplified Polymorphic DNA (RAPD) Analysis , 1998 .

[39]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[40]  D. Botstein,et al.  Construction of a genetic linkage map in man using restriction fragment length polymorphisms. , 1980, American journal of human genetics.

[41]  M. Warburton,et al.  Genetic Diversity in Peach (Prunus persica L. Batch) Revealed by Randomly Amplified Polymorphic DNA (RAPD) Markers and Compared to Inbreeding Coefficients , 1996 .

[42]  M. Claros,et al.  DNA fingerprinting and classification of geographically related genotypes of olive-tree (Olea europaea L.) , 2000, Euphytica.

[43]  J. Hormaza,et al.  Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars , 1995 .

[44]  E. Peterlunger,et al.  Conservation of microsatellite loci within the genus Vitis , 2000, Theoretical and Applied Genetics.

[45]  U. Galderisi,et al.  Molecular Typing of Italian Sweet Chestnut Cultivars by Random Amplified Polymorphic DNA Analysis , 1998 .

[46]  S. Korban,et al.  Evidence of gene introgression in apple using RAPD markers , 2004, Euphytica.

[47]  R. Scorza,et al.  Genetic linkage mapping in peach using morphological, RFLP and RAPD markers , 1995, Theoretical and Applied Genetics.

[48]  R. Tarchini,et al.  Simple sequence repeats for the genetic analysis of apple , 1998, Theoretical and Applied Genetics.

[49]  G. Besnard,et al.  Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars , 2001, Theoretical and Applied Genetics.

[50]  A. Iezzoni,et al.  Polymorphic DNA Markers in Black Cherry (Prunus serotina) Are Identified Using Sequences from Sweet Cherry, Peach, and Sour Cherry , 2000 .

[51]  A. Angiolillo,et al.  Olive genetic diversity assessed using amplified fragment length polymorphisms , 1999, Theoretical and Applied Genetics.

[52]  M. Proft,et al.  Incompatibility reactions and genotypic identity status of five commercial chicory (Cichorium intybus L.) hybrids , 1997 .

[53]  M. Deguilloux,et al.  Chloroplast-DNA variation in cultivated and wild olive (Olea europaea L.) , 1999, Theoretical and Applied Genetics.

[54]  T. Mikami,et al.  Organelle DNA polymorphism in apple cultivars and rootstocks , 1992, Theoretical and Applied Genetics.

[55]  H. Nybom,et al.  Genetic variation detected by use of the M13 “DNA fingerprint” probe in Malus, Prunus, and Rubus (Rosaceae) , 1990, Theoretical and Applied Genetics.

[56]  A. G. Abbott,et al.  Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch] , 2000, Theoretical and Applied Genetics.

[57]  C. Gessler,et al.  Identification of apple cultivars using RAPD markers , 1993, Theoretical and Applied Genetics.

[58]  M. Sedgley,et al.  Genetic variability between different accessions of some common commercial olive cultivars , 1999 .

[59]  A. Bakalinsky,et al.  Identification of Grape (Vitis) Rootstocks Using Sequence Characterized Amplified Region DNA Markers , 1996 .

[60]  H. Gerlach,et al.  Patterns of random amplified polymorphic DNAs for sweet cherry (Prunus avium L.) cultivar identification , 1997 .

[61]  A. Burny,et al.  Use of random cDNA probes to detect restriction fragment length polymorphisms among apple clones , 1991 .

[62]  G. Douglas,et al.  The use of random amplified polymorphic DNAs to fingerprint apple genotypes , 1993 .

[63]  N. Oraguzie,et al.  Comparison of RAPD and morpho‐nut markers for revealing genetic relationships between chestnut species (Castanea spp.) and New Zealand chestnut selections , 1998 .

[64]  J. Parent,et al.  Identification of Raspberry Cultivars by Sequence Characterized Amplified Region DNA Analysis , 1998 .

[65]  T. Shimada,et al.  Classification of Apricot Varieties by RAPD Analysis , 1998 .

[66]  C. Nusbaum,et al.  Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. , 1998, Science.

[67]  L. Goulao,et al.  Phenetic Characterization of Plum Cultivars by High Multiplex Ratio Markers: Amplified Fragment Length Polymorphisms and Inter-simple Sequence Repeats , 2001 .

[68]  R. Testolin,et al.  Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. , 2000, Genome.

[69]  T. Hayashi,et al.  SSRs isolated from apple can identify polymorphism and genetic diversity in pear , 2001, Theoretical and Applied Genetics.