Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage

[1]  Xingxiang Zhang,et al.  Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing , 2018 .

[2]  Omar Abdelaziz,et al.  Thermal charging performance of enhanced phase change material composites for thermal battery design , 2018 .

[3]  Zhiming Yu,et al.  Long-term stability of Au nanoparticle-anchored porous boron-doped diamond hybrid electrode for enhanced dopamine detection , 2018 .

[4]  Zhiming Yu,et al.  Nickel-encapsulated carbon nanotubes modified boron doped diamond hybrid electrode for non-enzymatic glucose sensing , 2018 .

[5]  F. Liu,et al.  Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage , 2018 .

[6]  Zongtao Li,et al.  Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity , 2017 .

[7]  Seong Jin Chang,et al.  Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites , 2017 .

[8]  Jing Ding,et al.  Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage , 2017 .

[9]  Dong Rip Kim,et al.  Fabrication of three-dimensional metal-graphene network phase change composite for high thermal conductivity and suppressed subcooling phenomena , 2017 .

[10]  G. Fang,et al.  Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials , 2017 .

[11]  John L. Wilson,et al.  Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events , 2017 .

[12]  Zhiming Yu,et al.  High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode , 2017 .

[13]  Minghui Yang,et al.  In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity , 2017 .

[14]  Wei Yang,et al.  Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage , 2017, Nano Research.

[15]  Yiyu Feng,et al.  Toward highly thermally conductive all-carbon composites: Structure control , 2016 .

[16]  Omar A. Abdelaziz,et al.  Thermal charging study of compressed expanded natural graphite/phase change material composites , 2016 .

[17]  G. Fang,et al.  Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity , 2016 .

[18]  P. Eames,et al.  Thermal energy storage for low and medium temperature applications using phase change materials – A review , 2016 .

[19]  T. A. Silva,et al.  Diamond-coated 'black silicon' as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces. , 2016, Journal of materials chemistry. B.

[20]  Zhiming Yu,et al.  Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode , 2016 .

[21]  K. Zhou,et al.  A new design of composites for thermal management: Aluminium reinforced with continuous CVD diamond coated W spiral wires , 2016 .

[22]  Chao Xu,et al.  Experimental study on enhancement of thermal energy storage with phase-change material , 2016 .

[23]  Zhengguo Zhang,et al.  Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage , 2016 .

[24]  Wei Yang,et al.  Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage , 2016 .

[25]  Yan Yu,et al.  Facile Solid‐State Growth of 3D Well‐Interconnected Nitrogen‐Rich Carbon Nanotube–Graphene Hybrid Architectures for Lithium–Sulfur Batteries , 2016 .

[26]  R. Ruoff,et al.  Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. , 2015, ACS nano.

[27]  Javier Rodríguez-Aseguinolaza,et al.  Preparation of erythritol–graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications , 2015 .

[28]  Wei Yang,et al.  Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage , 2015 .

[29]  Zhengguo Zhang,et al.  A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling , 2015 .

[30]  Li Shi,et al.  Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit , 2015 .

[31]  X. Lü,et al.  Heat transport enhancement of thermal energy storage material using graphene/ceramic composites , 2014 .

[32]  Qiaoqin Yang,et al.  Adhesion enhancement of diamond coating on minor Al-modified copper substrate , 2014 .

[33]  R. Ruoff,et al.  Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage , 2014 .

[34]  W. Milne,et al.  Porous boron-doped diamond/carbon nanotube electrodes. , 2014, ACS applied materials & interfaces.

[35]  Peng Zhang,et al.  Preparation and thermal characterization of paraffin/metal foam composite phase change material , 2013 .

[36]  K. Cen,et al.  Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials , 2013 .

[37]  Shufen Zhang,et al.  Single‐Walled Carbon Nanotube/Phase Change Material Composites: Sunlight‐Driven, Reversible, Form‐Stable Phase Transitions for Solar Thermal Energy Storage , 2013 .

[38]  Mahmoud Moeini Sedeh,et al.  Thermal conductivity improvement of phase change materials/graphite foam composites , 2013 .

[39]  Mi Zhou,et al.  Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage , 2013 .

[40]  K. Cen,et al.  Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes , 2013 .

[41]  Y. Mai,et al.  Improved interfacial adhesion between diamond film and copper substrate using a Cu(Cr)–diamond composite interlayer , 2012 .

[42]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[43]  Ni Zhang,et al.  Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material , 2012 .

[44]  Y. Mai,et al.  Improvement in adhesion of diamond film on Cu substrate with an inlay structured interlayer , 2011 .

[45]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[46]  M. Ashfold,et al.  Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament-substrate separation , 2011 .

[47]  P. May The New Diamond Age? , 2008, Science.

[48]  P. May,et al.  Thermal conductivity of CVD diamond fibres and diamond fibre reinfored epoxy composites , 2005 .

[49]  R. Mahajan,et al.  Thermophysical properties of high porosity metal foams , 2002 .

[50]  J. Gracio,et al.  Diamond deposition on copper: studies on nucleation, growth, and adhesion behaviours , 1999 .

[51]  K. J. Gray,et al.  Report on a second round robin measurement of the thermal conductivity of CVD diamond , 1998 .

[52]  Stephanie R. Sails,et al.  Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm , 1996 .

[53]  J. Graebner,et al.  Large anisotropic thermal conductivity in synthetic diamond films , 1992, Nature.

[54]  L. R. Glicksman,et al.  A Basic Study of Heat Transfer Through Foam Insulation , 1984 .

[55]  T. Jacob,et al.  Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films , 2017 .

[56]  Peng Zhang,et al.  Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam , 2017 .

[57]  W. Tao,et al.  Fatty acids as phase change materials: A review , 2014 .

[58]  N. Pu,et al.  Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives , 2013 .

[59]  Timothy D. Burchell,et al.  High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties , 2000 .

[60]  N. Everitt,et al.  Thin film diamond by chemical vapour deposition methods , 1994 .

[61]  P. May,et al.  Auger electron spectroscopic analysis of chemical vapour deposited diamond/substrate interfaces , 1994, Journal of Materials Science.