Fragmentation of Magic‐Size Cluster Precursor Compounds into Ultrasmall CdS Quantum Dots with Enhanced Particle Yield at Low Temperatures

[1]  C. Palencia,et al.  The Future of Colloidal Semiconductor Magic-Size Clusters. , 2020, ACS nano.

[2]  Kui Yu,et al.  Transformation of ZnS Precursor Compounds to Magic-Size Clusters Exhibiting Optical Absorption Peaking at 269 nm. , 2019, The journal of physical chemistry letters.

[3]  Jianjun Wang,et al.  Probing the critical nucleus size for ice formation with graphene oxide nanosheets , 2019, Nature.

[4]  M. Bawendi,et al.  Blue Light Emitting Defective Nanocrystals Composed of Earth-Abundant Elements. , 2019, Angewandte Chemie.

[5]  Helmut Cölfen,et al.  Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wässriger Lösung , 2019, Angewandte Chemie.

[6]  Xurong Xu,et al.  Crosslinking ionic oligomers as conformable precursors to calcium carbonate , 2019, Nature.

[7]  H. Cölfen,et al.  Liquid Metastable Precursors of Ibuprofen as Aqueous Nucleation Intermediates , 2019, Angewandte Chemie.

[8]  Wenguang Zhu,et al.  Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states , 2019, Nature Communications.

[9]  Kui Yu,et al.  Four Types of CdTe Magic-Size Clusters from One Prenucleation Stage Sample at Room Temperature. , 2019, The journal of physical chemistry letters.

[10]  Xu‐Bing Li,et al.  Quantum Dot Assembly for Light-Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO2 Reduction. , 2019, Angewandte Chemie.

[11]  Kui Yu,et al.  One-Step Approach to Single-Ensemble CdS Magic-Size Clusters with Enhanced Production Yields. , 2019, The journal of physical chemistry letters.

[12]  Wei Chen,et al.  The Tough Journey of Polymer Crystallization: Battling with Chain Flexibility and Connectivity , 2019, Macromolecules.

[13]  D. J. Lockwood,et al.  Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature , 2019, Nature Communications.

[14]  J. Grossman,et al.  Revealing the Cluster‐Cloud and Its Role in Nanocrystallization , 2019, Advances in Materials.

[15]  U. Banin,et al.  Chemically reversible isomerization of inorganic clusters , 2019, Science.

[16]  Won Chul Lee,et al.  Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. , 2019, Journal of the American Chemical Society.

[17]  H. Fan,et al.  Precursor Self‐Assembly Identified as a General Pathway for Colloidal Semiconductor Magic‐Size Clusters , 2018, Advanced science.

[18]  Kui Yu,et al.  Evolution of Two Types of CdTe Magic-Size Clusters from a Single Induction Period Sample. , 2018, The journal of physical chemistry letters.

[19]  Liang Huang,et al.  Single‐Nanoparticle Cell Barcoding by Tunable FRET from Lanthanides to Quantum Dots , 2018, Angewandte Chemie.

[20]  Martina Delbianco,et al.  Einzelnanopartikel-Strichkodierung von Zellen mittels durchstimmbarem FRET von Lanthanoiden auf Quantenpunkte , 2018, Angewandte Chemie.

[21]  X. Zuo,et al.  Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters , 2018, Nature Communications.

[22]  Changwei Hu,et al.  Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. , 2018, The journal of physical chemistry letters.

[23]  Kui Yu,et al.  Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. , 2018, The journal of physical chemistry letters.

[24]  K. Khajeh,et al.  Taking Advantage of Hydrophobic Fluorine Interactions for Self-Assembled Quantum Dots as a Delivery Platform for Enzymes. , 2018, Angewandte Chemie.

[25]  M. Bawendi,et al.  A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. , 2018, Angewandte Chemie.

[26]  B. Cossairt,et al.  Templated Growth of InP Nanocrystals with a Polytwistane Structure. , 2018, Angewandte Chemie.

[27]  J. Ripmeester,et al.  Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311 , 2017 .

[28]  J. Ripmeester,et al.  Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots , 2017, Nature Communications.

[29]  Xiang Ma,et al.  Tuning crystallization pathways through sequence engineering of biomimetic polymers. , 2017, Nature materials.

[30]  K. Jensen,et al.  Characterization of Indium Phosphide Quantum Dot Growth Intermediates Using MALDI-TOF Mass Spectrometry. , 2016, Journal of the American Chemical Society.

[31]  Ting Qi,et al.  General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals , 2016, Nature Communications.

[32]  P. Král,et al.  Multistep nucleation of nanocrystals in aqueous solution. , 2016, Nature chemistry.

[33]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[34]  Changwei Hu,et al.  Mechanistic study of the role of primary amines in precursor conversions to semiconductor nanocrystals at low temperature. , 2014, Angewandte Chemie.

[35]  A. V. Van Driessche,et al.  Role of clusters in nonclassical nucleation and growth of protein crystals , 2014, Proceedings of the National Academy of Sciences.

[36]  J. Ripmeester,et al.  Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. , 2013, Angewandte Chemie.

[37]  Haitao Liu,et al.  Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors , 2013 .

[38]  P. van der Schoot,et al.  Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate , 2013, Nature Communications.

[39]  Roger J. Davey,et al.  Keimbildung organischer Kristalle aus molekularer Sichtweise , 2013 .

[40]  A. Eychmüller,et al.  Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. , 2013, Angewandte Chemie.

[41]  E. Weiss,et al.  Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms. , 2012, Journal of the American Chemical Society.

[42]  R. Davey,et al.  Nucleation of organic crystals--a molecular perspective. , 2012, Angewandte Chemie.

[43]  J. Gale,et al.  Stable prenucleation mineral clusters are liquid-like ionic polymers , 2011, Nature communications.

[44]  F. Müller,et al.  The role of prenucleation clusters in surface-induced calcium phosphate crystallization. , 2010, Nature materials.

[45]  Christopher M. Evans,et al.  Mysteries of TOPSe revealed: insights into quantum dot nucleation. , 2010, Journal of the American Chemical Society.

[46]  A. Schaper,et al.  Discontinuous Growth of II−VI Semiconductor Nanocrystals from Different Materials , 2010 .

[47]  Sung Jun Lim,et al.  Collision-induced dissociation of II-VI semiconductor nanocrystal precursors, Cd2+ and Zn2+ complexes with trioctylphosphine oxide, sulfide, and selenide. , 2009, Journal of Physical Chemistry A.

[48]  Chun-yan Liu,et al.  Study of Magic-Size-Cluster Mediated Formation of CdS Nanocrystals: Properties of the Magic-Size Clusters and Mechanism Implication , 2009 .

[49]  J. Ripmeester,et al.  Photoluminescent Colloidal CdS Nanocrystals with High Quality via Noninjection One-Pot Synthesis in 1-Octadecene , 2009 .

[50]  Helmut Cölfen,et al.  Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.

[51]  L. An,et al.  Observation of Nucleation and Growth of CdS Nanocrystals in a Two-phase System , 2008 .

[52]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[53]  Y. C. Cao,et al.  One-pot synthesis of high-quality zinc-blende CdS nanocrystals. , 2004, Journal of the American Chemical Society.

[54]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[55]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[56]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .