Energy saving in ceramic tile kilns: Cooling gas heat recovery

Abstract A great quantity of thermal energy is consumed in ceramic tile manufacture, mainly in the firing stage. The most widely used facilities are roller kilns, fuelled by natural gas, in which more than 50% of the energy input is lost through the flue gas and cooling gas exhaust stacks. This paper presents a calculation methodology, based on certain kiln operating parameters, for quantifying the energy saving obtained in the kiln when part of the cooling gases are recovered in the firing chamber and are not exhausted into the atmosphere. Energy savings up to 17% have been estimated in the studied case. Comparison of the theoretical results with the experimental data confirmed the validity of the proposed methodology. The study also evidenced the need to improve combustion process control, owing to the importance of the combustion process in kiln safety and energy efficiency.

[1]  Sinem Kaya,et al.  Model-based optimization of heat recovery in the cooling zone of a tunnel kiln , 2008 .

[2]  Ebru Mancuhan,et al.  Optimization of fuel and air use in a tunnel kiln to produce coal admixed bricks , 2006 .

[3]  Vladan Karamarkovic,et al.  Improving design and operating parameters of the recuperator for waste heat recovery from rotary kilns , 2013, Thermal Science.

[4]  María D. Bovea,et al.  Environmental performance of ceramic tiles: Improvement proposals , 2010 .

[5]  E. Vaquer,et al.  Optimización energética en la fabricación de baldosas cerámicas mediante el uso de aceite térmico , 2012 .

[6]  Muhammad Mahbubur Rashid,et al.  Energy savings in the combustion based process heating in industrial sector , 2012 .

[7]  Eliseo Monfort,et al.  Environmental development of the Spanish ceramic tile manufacturing sector over the period 1992–2007 , 2012 .

[8]  Richard L. Ottinger,et al.  Compendium of Sustainable Energy Laws: Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading Within the Community and Amending Council Directive 96/61/EC , 2005 .

[9]  A. Mezquita,et al.  ANALYSIS OF ENERGY CONSUMPTION AND CARBON DIOXIDE EMISSIONS IN CERAMIC , 2010 .

[10]  A. Mezquita,et al.  Sector azulejero y comercio de emisiones: reducción de emisiones de CO2, benchmarking europeo , 2009 .

[11]  A. Mezquita,et al.  Energy Optimisation in Ceramic Tile Manufacture by Using Thermal Oil , 2012 .

[12]  Theocharis Tsoutsos,et al.  Energy saving technologies in the European ceramic sector: a systematic review , 2001 .

[13]  Noriyuki Kobayashi,et al.  The characteristics of a heat-recirculating ceramic burner , 1998 .

[14]  Junxia Peng,et al.  CO2 Emission Calculation and Reduction Options in Ceramic Tile Manufacture-The Foshan Case , 2012 .

[15]  G. Mallol,et al.  Improving energy efficiency in single-deck kilns by optimization of the process variables , 1995 .

[16]  Ferdinando Cassani Recovering Energy - from Kilns, Dryers, Spray Dryers and Mills , 2010 .

[17]  E. Vaquer,et al.  Análisis de consumos energéticos y emisiones de dióxido de carbono en la fabricación de baldosas cerámicas , 2010 .

[18]  Saad Mekhilef,et al.  A review on energy saving strategies in industrial sector , 2011 .

[19]  François Maréchal,et al.  Defining “Waste Heat” for industrial processes , 2013 .