Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart
暂无分享,去创建一个
[1] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[2] Po-Wen Hsieh,et al. On efficient least-squares finite element methods for convection-dominated problems , 2009 .
[3] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[4] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[5] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[6] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[7] Miloslav Feistauer,et al. L ∞ (L 2)-error estimates for the DGFEM applied to convection–diffusion problems on nonconforming meshes , 2009, J. Num. Math..
[8] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[9] M. Lukáčová-Medvid'ová,et al. On the Convergence of a Combined Finite Volume{Finite Element Method for Nonlinear Convection{Diffusion Problems , 1997 .
[10] M. Tidriri. Error estimates for the hybrid finite element/finite volume methods for linear hyperbolic and convection-dominated problems , 2003 .
[11] Katsushi Ohmori,et al. A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations , 1984 .
[12] Miloslav Feistauer,et al. On the convergence of a combined finite volume–finite element method for nonlinear convection–diffusion problems. Explicit schemes , 1999 .
[13] Alain Dervieux,et al. Computation of unsteady flows with mixed finite volume/finite element upwind methods , 1998 .
[14] Martin Stynes,et al. Numerical methods for convection-diffusion problems or The 30 years war , 2013, 1306.5172.
[15] Zhitao Li. Convergence analysis of an upwind mixed element method for advection diffusion problems , 2009, Appl. Math. Comput..
[16] Philippe Angot,et al. Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .
[17] Marc Buffat,et al. An implicit mixed finite‐volume–finite‐element method for solving 3D turbulent compressible flows , 1997 .
[18] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[19] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..
[20] Gerald Warnecke,et al. Error Estimates for a Combined Finite Volume--Finite Element Method for Nonlinear Convection--Diffusion Problems , 1999 .
[21] P. Causin,et al. FLUX-UPWIND STABILIZATION OF THE DISCONTINUOUS PETROV-GALERKIN FORMULATION WITH LAGRANGE MULTIPLIERS FOR ADVECTION-DIFFUSION PROBLEMS ∗ , 2005 .
[22] Paul Deuring,et al. Stability of a combined finite element ‐ finite volume discretization of convection‐diffusion equations , 2012 .
[23] Martin Vohralík,et al. A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids , 2009 .
[24] Tsutomu Ikeda,et al. Maximum Principle in Finite Element Models for Convection-diffusion Phenomena , 1983 .
[25] Song Wang,et al. A nonconforming combination of the finite element and volume methods with an anisotropic mesh refinement for a singularly perturbed convection-diffusion equation , 2003, Math. Comput..
[26] Miloslav Feistauer,et al. Error Estimates for Barycentric Finite Volumes Combined with Nonconforming Finite Elements Applied to Nonlinear Convection-Diffusion Problems , 2002 .
[27] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..
[28] Hantaek Bae. Navier-Stokes equations , 1992 .
[29] Stefano Micheletti,et al. Stability and error analysis of mixed finite-volume methods for advection dominated problems , 2006, Comput. Math. Appl..
[30] Giancarlo Sangalli,et al. Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..
[31] Jean-Michel Ghidaglia,et al. Error Estimate and the Geometric Corrector for the Upwind Finite Volume Method Applied to the Linear Advection Equation , 2005, SIAM J. Numer. Anal..
[32] Martin Vohralík,et al. A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.
[33] H. Rui. Convergence of an upwind control-volume mixed finite element method for convection–diffusion problems , 2007, Computing.
[34] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[35] Vít Dolejší,et al. On the Discrete Friedrichs Inequality for Nonconforming Finite Elements , 1999 .
[36] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case , 2009, Math. Comput..
[37] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[38] G. Burton. Sobolev Spaces , 2013 .
[39] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[40] M. Tidriri. Analysis of the hybrid finite element/finite volume methods for linear hyperbolic and convection-dominated convection-diffusion problems , 2002 .