Temperature-induced different deformation mechanisms for compressive behavior of nanotwinned Cu: molecular dynamics simulation

[1]  M. Szczerba,et al.  Detwinning-twinning behavior during compression of face-centered cubic twin-matrix layered microstructure , 2020 .

[2]  B. Svendsen,et al.  Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals , 2020, Materials.

[3]  Huajian Gao,et al.  Competition between shear localization and tensile detwinning in twinned nanowires , 2020 .

[4]  L. Lu,et al.  Cold rolling behaviour of Cu with highly oriented nanotwins: the importance of local shear strain , 2019, IOP Conference Series: Materials Science and Engineering.

[5]  Huajian Gao,et al.  Extra strengthening and work hardening in gradient nanotwinned metals , 2018, Science.

[6]  M. Szczerba,et al.  Experimental studies on detwinning of face-centered cubic deformation twins , 2016 .

[7]  Pierre Hirel,et al.  Atomsk: A tool for manipulating and converting atomic data files , 2015, Comput. Phys. Commun..

[8]  Huajian Gao,et al.  Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures. , 2015, Nano letters.

[9]  B. Shen,et al.  Deformation twinning and detwinning in the lamella copper observed by in-situ TEM , 2013 .

[10]  S. Ringer,et al.  De-twinning via secondary twinning in face-centered cubic alloys , 2013 .

[11]  Q. Tang,et al.  MD simulations of loading rate dependence of detwinning deformation in nanocrystalline Ni , 2013 .

[12]  T. Sun,et al.  Detwinning-induced reduction in ductility of twinned copper nanowires , 2013 .

[13]  Huajian Gao,et al.  Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling , 2012 .

[14]  K. Lu,et al.  Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains , 2012 .

[15]  S. Ringer,et al.  Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals , 2011 .

[16]  K. Lu,et al.  Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins , 2011 .

[17]  Yujie Wei The kinetics and energetics of dislocation mediated de-twinning in nano-twinned face-centered cubic metals , 2011 .

[18]  J. Hirth,et al.  Detwinning mechanisms for growth twins in face-centered cubic metals , 2010 .

[19]  K. Lu,et al.  Temperature effect on rolling behavior of nano-twinned copper , 2010 .

[20]  Alexander Stukowski,et al.  Dislocation detection algorithm for atomistic simulations , 2010 .

[21]  S. Mao,et al.  Reversible twinning in pure aluminum. , 2009, Physical review letters.

[22]  S. Suresh,et al.  Strain rate sensitivity of Cu with nanoscale twins , 2006 .

[23]  Marc A. Meyers,et al.  THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .

[24]  Arthur F. Voter,et al.  Structural stability and lattice defects in copper: Ab initio , tight-binding, and embedded-atom calculations , 2001 .

[25]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[28]  U. Wei The kinetics and energetics of dislocation mediated de-twinning in nano-twinned face-centered cubic metals , 2010 .