Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type

New short and easy computer proofs of finite versions of the Rogers-Ramanujan identities and of similar type are given. These include a very short proof of the first Rogers-Ramanujan identity that was missed by computers, and a new proof of the well-known quintuple product identity by creative telescoping.

[1]  Peter Paule On identities of the Rogers-Ramanujan type , 1985 .

[2]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[3]  David M. Bressoud,et al.  Some identities for terminating q-series , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[5]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Doron Zeilberger,et al.  Theorems for a price: tomorrow’s semi-rigorous mathematical culture , 1993 .

[7]  George E. Andrews,et al.  q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .

[8]  George E. Andrews The Rogers-Ramanujan identities without Jacobi's triple product , 1987 .

[9]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[10]  Peter Paule,et al.  Greatest Factorial Factorization and Symbolic Summation , 1995, J. Symb. Comput..

[11]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[12]  Shalosh B. Ekhad,et al.  A purely verification proof of the first Rogers-Ramanujan identity , 1990, J. Comb. Theory, Ser. A.

[13]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[14]  Doron Zeilberger,et al.  Rational function certification of multisum/integral/``$q$'' identities , 1992 .

[15]  G. Andrews,et al.  The hard-hexagon model and Rogers-Ramanujan type identities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Diploma Thesis,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm for Proving q-Hypergeometric Identities , 1995 .

[17]  S. Sanders,et al.  Solution of Problem , 1929 .

[18]  George E. Andrews,et al.  Applications of Basic Hypergeometric Functions , 1974 .

[19]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[20]  George E. Andrews,et al.  HOOK DIFFERENCES AND LATTICE PATHS , 1986 .

[21]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[22]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[23]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..