A Hybrid Proximal-Extragradient Algorithm with Inertial Effects

In this article, we incorporate inertial terms in the hybrid proximal-extragradient algorithm and investigate the convergence properties of the resulting iterative scheme designed to find the zeros of a maximally monotone operator in real Hilbert spaces. The convergence analysis relies on extended Fejér monotonicity techniques combined with the celebrated Opial Lemma. We also show that the classical hybrid proximal-extragradient algorithm and the inertial versions of the proximal point, the forward-backward and the forward-backward-forward algorithms can be embedded into the framework of the proposed iterative scheme.

[1]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  A. Iusem,et al.  Enlargement of Monotone Operators with Applications to Variational Inequalities , 1997 .

[4]  M. V. Solodovy,et al.  A Hybrid Projection{proximal Point Algorithm , 1998 .

[5]  B. Svaiter,et al.  ε-Enlargements of Maximal Monotone Operators: Theory and Applications , 1998 .

[6]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[7]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[8]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[9]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[10]  A. Moudafi,et al.  Convergence of a splitting inertial proximal method for monotone operators , 2003 .

[11]  Felipe Alvarez,et al.  Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space , 2003, SIAM J. Optim..

[12]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[13]  R. Boţ,et al.  An Application of the Bivariate Inf-Convolution Formula to Enlargements of Monotone Operators , 2008 .

[14]  Paul-Emile Maingé,et al.  Convergence of New Inertial Proximal Methods for DC Programming , 2008, SIAM J. Optim..

[15]  P. Maingé Convergence theorems for inertial KM-type algorithms , 2008 .

[16]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[17]  Renato D. C. Monteiro,et al.  On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean , 2010, SIAM J. Optim..

[18]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[19]  Ernö Robert Csetnek,et al.  Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators , 2010 .

[20]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[21]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[22]  A. Cabot,et al.  Asymptotics for Some Proximal-like Method Involving Inertia and Memory Aspects , 2011 .

[23]  J. Pesquet,et al.  A Parallel Inertial Proximal Optimization Method , 2012 .

[24]  Benar Fux Svaiter A Class of Fejér Convergent Algorithms, Approximate Resolvents and the Hybrid Proximal-Extragradient Method , 2014, J. Optim. Theory Appl..

[25]  Juan Peypouquet,et al.  A Dynamical Approach to an Inertial Forward-Backward Algorithm for Convex Minimization , 2014, SIAM J. Optim..

[26]  R. Boţ,et al.  An inertial alternating direction method of multipliers , 2014, 1404.4582.

[27]  Radu Ioan Bot,et al.  Inertial Douglas-Rachford splitting for monotone inclusion problems , 2014, Appl. Math. Comput..

[28]  Radu Ioan Bot,et al.  An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems , 2014, Numerical Algorithms.