WIND POWER PROBABILISTIC PREDICTION AND UNCERTAINTY MODELING FOR OPERATION OF LARGE-SCALE POWER SYSTEMS

......................................................................................................................................... ii Acknowledgments ........................................................................................................................ iv Table of

[1]  Jianhui Wang,et al.  Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting , 2012, IEEE Transactions on Sustainable Energy.

[2]  Bin Wang,et al.  Robust Look-Ahead Power Dispatch With Adjustable Conservativeness Accommodating Significant Wind Power Integration , 2015, IEEE Transactions on Sustainable Energy.

[3]  Jin Lin,et al.  A Versatile Probability Distribution Model for Wind Power Forecast Errors and Its Application in Economic Dispatch , 2013, IEEE Transactions on Power Systems.

[4]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[5]  Kee-Hoon Kang,et al.  Adaptive variable location kernel density estimators with good performance at boundaries , 2003 .

[6]  K. Wong,et al.  Distributionally Robust Solution to the Reserve Scheduling Problem With Partial Information of Wind Power , 2015, IEEE Transactions on Power Systems.

[7]  P. Jirutitijaroen,et al.  Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources , 2011, IEEE Transactions on Power Systems.

[8]  Göran Andersson,et al.  Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms , 2017, IEEE Transactions on Power Systems.

[9]  Feng Liu,et al.  Chance-Constrained Economic Dispatch With Non-Gaussian Correlated Wind Power Uncertainty , 2017, IEEE Transactions on Power Systems.

[10]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[11]  Kenneth Bruninx,et al.  A Statistical Description of the Error on Wind Power Forecasts for Probabilistic Reserve Sizing , 2014, IEEE Transactions on Sustainable Energy.

[12]  Paras Mandal,et al.  A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting , 2014, IEEE Transactions on Power Systems.

[13]  Thomas Ackermann,et al.  Wind Power in Power Systems , 2005 .

[14]  Hoay Beng Gooi,et al.  Ellipsoidal Prediction Regions for Multivariate Uncertainty Characterization , 2017, IEEE Transactions on Power Systems.

[15]  Hossein Sangrody,et al.  On the performance of forecasting models in the presence of input uncertainty , 2017, 2017 North American Power Symposium (NAPS).

[16]  Jian Xu,et al.  Look-Ahead Economic Dispatch With Adjustable Confidence Interval Based on a Truncated Versatile Distribution Model for Wind Power , 2018, IEEE Transactions on Power Systems.

[17]  Jianxue Wang,et al.  K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting , 2016 .

[18]  Miles Lubin,et al.  A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation , 2015, IEEE Transactions on Power Systems.

[19]  Arsalane Chouaib Guidoum,et al.  Kernel Estimator and Bandwidth Selection for Density and its Derivatives The kedd Package Version 1 . 0 . 3 by Arsalane , 2020, 2012.06102.

[20]  Ming Yang,et al.  Robust economic dispatch considering automatic generation control with affine recourse process , 2016 .

[21]  N. Safari,et al.  A spatiotemporal wind power prediction based on wavelet decomposition, feature selection, and localized prediction , 2017, 2017 IEEE Electrical Power and Energy Conference (EPEC).

[22]  T. Zheng,et al.  Robust Optimization and Its Application to Power System Operation , 2012 .

[23]  Vladimiro Miranda,et al.  Wind power forecasting in U.S. Electricity markets , 2010 .

[24]  Jan Kloppenborg Møller,et al.  ARTICLE IN PRESS Computational Statistics & Data Analysis ( ) – Time-adaptive quantile regression , 2022 .

[25]  N. Menemenlis,et al.  Computation of Dynamic Operating Balancing Reserve for Wind Power Integration for the Time-Horizon 1–48 Hours , 2012, IEEE Transactions on Sustainable Energy.

[26]  Eike Christian Brechmann,et al.  Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .

[27]  Jianhua Chen,et al.  A Robust Wind Power Optimization Method for Look-Ahead Power Dispatch , 2014, IEEE Transactions on Sustainable Energy.

[28]  R. J. Bessa,et al.  Reserve Setting and Steady-State Security Assessment Using Wind Power Uncertainty Forecast: A Case Study , 2012, IEEE Transactions on Sustainable Energy.

[29]  Meysam Doostizadeh,et al.  Energy and Reserve Scheduling Under Wind Power Uncertainty: An Adjustable Interval Approach , 2016, IEEE Transactions on Smart Grid.

[30]  P. Kall STOCHASTIC LINEAR PROGRAMMING Models , Theory , and Computation , 2013 .

[31]  Henrik Madsen,et al.  Evaluation of Nonparametric Probabilistic Forecasts of Wind Power , 2007 .

[32]  Gerassimos A. Athanassoulis,et al.  The truncated Hausdorff moment problem solved by using kernel density functions , 2002 .

[33]  A. Fabbri,et al.  Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market , 2005, IEEE Transactions on Power Systems.

[34]  Goran Strbac,et al.  C-Vine copula mixture model for clustering of residential electrical load pattern data , 2017 .

[35]  Benyamin Khorramdel,et al.  A Multi-Objective Economic Load Dispatch Considering Accessibility of Wind Power with Here-And-Now Approach , 2014 .

[36]  Xuan Liu,et al.  Frequency Dynamics Constrained Unit Commitment With Battery Energy Storage , 2016, IEEE Transactions on Power Systems.

[37]  Kit Po Wong,et al.  Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine , 2014, IEEE Transactions on Power Systems.

[38]  D. Infield,et al.  Application of Auto-Regressive Models to U.K. Wind Speed Data for Power System Impact Studies , 2012, IEEE Transactions on Sustainable Energy.

[39]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[40]  Amir F. Atiya,et al.  Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals , 2011, IEEE Transactions on Neural Networks.

[41]  Michal Kaut,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[42]  Li Yao,et al.  Distributionally Robust Chance-Constrained Approximate AC-OPF With Wasserstein Metric , 2017, IEEE Transactions on Power Systems.

[43]  Okyay Kaynak,et al.  Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting , 2017, IEEE Transactions on Industrial Informatics.

[44]  Jianhui Wang,et al.  Demand Dispatch and Probabilistic Wind Power Forecasting in Unit Commitment and Economic Dispatch: A Case Study of Illinois , 2013, IEEE Transactions on Sustainable Energy.

[45]  S. Mei,et al.  Distributionally Robust Co-Optimization of Energy and Reserve Dispatch , 2016, IEEE Transactions on Sustainable Energy.

[46]  M A Matos,et al.  Setting the Operating Reserve Using Probabilistic Wind Power Forecasts , 2011, IEEE Transactions on Power Systems.

[47]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[48]  Bin Wang,et al.  Adjustable Robust Real-Time Power Dispatch With Large-Scale Wind Power Integration , 2015, IEEE Transactions on Sustainable Energy.

[49]  Mark O'Malley,et al.  Impact of Wind Forecast Error Statistics Upon Unit Commitment , 2012, IEEE Transactions on Sustainable Energy.

[50]  R. J. Bessa,et al.  Quantile-copula density forecast for wind power uncertainty modeling , 2011, 2011 IEEE Trondheim PowerTech.

[51]  Pierre Pinson,et al.  On‐line assessment of prediction risk for wind power production forecasts , 2003 .

[52]  J. B. Bremnes A comparison of a few statistical models for making quantile wind power forecasts , 2006 .

[53]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  Vladimiro Miranda,et al.  Wind Power Trading Under Uncertainty in LMP Markets , 2012, IEEE Transactions on Power Systems.

[55]  Cheng Wang,et al.  Robust Risk-Constrained Unit Commitment With Large-Scale Wind Generation: An Adjustable Uncertainty Set Approach , 2015, IEEE Transactions on Power Systems.

[56]  Yi Ding,et al.  A Convex Model of Risk-Based Unit Commitment for Day-Ahead Market Clearing Considering Wind Power Uncertainty , 2015, IEEE Transactions on Power Systems.

[57]  Jianxue Wang,et al.  Review on probabilistic forecasting of wind power generation , 2014 .

[58]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[59]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[60]  S. Nahavandi,et al.  Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts , 2013, IEEE Transactions on Sustainable Energy.

[61]  Weisheng Wang,et al.  Probabilistic Forecast for Multiple Wind Farms Based on Regular Vine Copulas , 2018, IEEE Transactions on Power Systems.

[62]  Ruth Ann Marrie,et al.  Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. , 2009, Journal of clinical epidemiology.

[63]  Bri-Mathias Hodge,et al.  Wind power forecasting error distributions over multiple timescales , 2011, 2011 IEEE Power and Energy Society General Meeting.

[64]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[65]  John Bjørnar Bremnes,et al.  Probabilistic wind power forecasts using local quantile regression , 2004 .

[66]  Hsiao-Dong Chiang,et al.  Toward Cost-Oriented Forecasting of Wind Power Generation , 2018, IEEE Transactions on Smart Grid.

[67]  Cheng Wang,et al.  Risk-Based Admissibility Assessment of Wind Generation Integrated into a Bulk Power System , 2016, IEEE Transactions on Sustainable Energy.

[68]  Rui Shi,et al.  An Efficient Approach to Power System Uncertainty Analysis With High-Dimensional Dependencies , 2018, IEEE Transactions on Power Systems.

[69]  Dissertação De Mestrado Apresentada,et al.  WIND POWER FORECASTING UNCERTAINTY AND UNIT COMMITMENT , 2014 .

[70]  H. Bludszuweit,et al.  A Probabilistic Method for Energy Storage Sizing Based on Wind Power Forecast Uncertainty , 2011, IEEE Transactions on Power Systems.

[71]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[72]  John R. Birge,et al.  An Improved Stochastic Unit Commitment Formulation to Accommodate Wind Uncertainty , 2016, IEEE Transactions on Power Systems.

[73]  K. Sharma,et al.  Wind Power Scenario Generation and Reduction in Stochastic Programming Framework , 2013 .

[74]  Pierluigi Siano,et al.  Optimal Battery Sizing in Microgrids Using Probabilistic Unit Commitment , 2016, IEEE Transactions on Industrial Informatics.

[75]  G. Papaefthymiou,et al.  Generation of Statistical Scenarios of Short-term Wind Power Production , 2007, 2007 IEEE Lausanne Power Tech.

[76]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[77]  Henrik Madsen,et al.  Skill forecasting from ensemble predictions of wind power , 2009 .

[78]  Henrik Madsen,et al.  Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts , 2006 .

[79]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[80]  Wenyuan Li,et al.  Generation System Reliability Evaluation Incorporating Correlations of Wind Speeds With Different Distributions , 2013, IEEE Transactions on Power Systems.

[81]  Michael Milligan,et al.  Characterizing and Modeling Wind Power Forecast Errors from Operational Systems for Use in Wind Integration Planning Studies , 2012 .

[82]  Yongpei Guan,et al.  Data-Driven Stochastic Unit Commitment for Integrating Wind Generation , 2016, IEEE Transactions on Power Systems.

[83]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[84]  Kit Po Wong,et al.  Optimal Prediction Intervals of Wind Power Generation , 2014, IEEE Transactions on Power Systems.

[85]  P. N. Gavriliadis,et al.  The truncated Stieltjes moment problem solved by using kernel density functions , 2012, J. Comput. Appl. Math..

[86]  Georges Kariniotakis,et al.  The state-of-the-art in short term prediction of wind power from a danish perspective , 2018 .

[87]  L. Yao,et al.  Two-Stage Optimization of Battery Energy Storage Capacity to Decrease Wind Power Curtailment in Grid-Connected Wind Farms , 2018, IEEE Transactions on Power Systems.

[88]  Qianfan Wang,et al.  A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output , 2012, 2012 IEEE Power and Energy Society General Meeting.

[89]  Bikash C. Pal,et al.  Intermittent wind generation in optimal power flow dispatching , 2009 .

[90]  Lei Yang,et al.  Stochastic Optimization-Based Economic Dispatch and Interruptible Load Management With Increased Wind Penetration , 2016, IEEE Transactions on Smart Grid.

[91]  Claudia Czado,et al.  Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .

[92]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[93]  Georges Kariniotakis,et al.  Wind power prediction risk indices based on numerical weather prediction ensembles , 2010 .

[94]  Johanna L. Mathieu,et al.  Distributionally Robust Chance-Constrained Optimal Power Flow With Uncertain Renewables and Uncertain Reserves Provided by Loads , 2017, IEEE Transactions on Power Systems.

[95]  Pierre Pinson,et al.  Standardizing the Performance Evaluation of Short-Term Wind Power Prediction Models , 2005 .

[96]  Yonghua Song,et al.  Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical Approach , 2017, IEEE Transactions on Power Systems.

[97]  J.A.P. Lopes,et al.  On the optimization of the daily operation of a wind-hydro power plant , 2004, IEEE Transactions on Power Systems.

[98]  Chongqing Kang,et al.  Managing Wind Power Uncertainty Through Strategic Reserve Purchasing , 2017, IEEE Transactions on Power Systems.

[99]  Pierre Pinson,et al.  Very Short-Term Nonparametric Probabilistic Forecasting of Renewable Energy Generation— With Application to Solar Energy , 2016, IEEE Transactions on Power Systems.

[100]  C. R. Rao,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[101]  Matthias Lange,et al.  Analysis of the uncertainty of wind power predictions , 2003 .

[102]  F. Bouffard,et al.  Stochastic security for operations planning with significant wind power generation , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[103]  Pierre Pinson,et al.  Trading wind energy on the basis of probabilistic forecasts both of wind generation and of market quantities , 2013 .

[104]  C. Y. Chung,et al.  A Distributionally Robust Chance-Constrained MILP Model for Multistage Distribution System Planning With Uncertain Renewables and Loads , 2018, IEEE Transactions on Power Systems.

[105]  Emil M. Constantinescu,et al.  TIME-ADAPTIVE KERNEL DENSITY FORECAST: A NEW METHOD FOR WIND POWER UNCERTAINTY MODELING , 2011 .

[106]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[107]  G. Papaefthymiou,et al.  Modeling of Spatial Dependence in Wind Power Forecast Uncertainty , 2008, Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems.

[108]  Jie Zhang,et al.  A Data-Driven Methodology for Probabilistic Wind Power Ramp Forecasting , 2019, IEEE Transactions on Smart Grid.

[109]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[110]  Vladimiro Miranda,et al.  Finding representative wind power scenarios and their probabilities for stochastic models , 2011, 2011 16th International Conference on Intelligent System Applications to Power Systems.

[111]  J. Marron,et al.  Transformations to reduce boundary bias in kernel density estimation , 1994 .

[112]  Weijun Xie,et al.  Distributionally Robust Chance Constrained Optimal Power Flow with Renewables: A Conic Reformulation , 2018, IEEE Transactions on Power Systems.

[113]  Xiaohong Guan,et al.  Analyzing aggregated characteristics of distributed wind farms , 2012, PES 2012.

[114]  Achille Messac,et al.  Multivariate and Multimodal Wind Distribution Model Based on Kernel Density Estimation , 2011 .

[115]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[116]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[117]  Göran Andersson,et al.  Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow , 2017, IEEE Transactions on Power Systems.

[118]  Zuyi Li,et al.  Intra-Interval Security Based Dispatch for Power Systems With High Wind Penetration , 2019, IEEE Transactions on Power Systems.

[119]  Yang Wang,et al.  Unit Commitment With Volatile Node Injections by Using Interval Optimization , 2011, IEEE Transactions on Power Systems.

[120]  G.N. Kariniotakis,et al.  Probabilistic Short-term Wind Power Forecasting for the Optimal Management of Wind Generation , 2007, 2007 IEEE Lausanne Power Tech.

[121]  Georges Kariniotakis,et al.  Uncertainty estimation of wind power forecasts: Comparison of Probabilistic Modelling Approaches , 2008 .

[122]  Alvaro Lorca,et al.  Adaptive Robust Optimization With Dynamic Uncertainty Sets for Multi-Period Economic Dispatch Under Significant Wind , 2014, IEEE Transactions on Power Systems.

[123]  A. Llombart,et al.  Statistical Analysis of Wind Power Forecast Error , 2008, IEEE Transactions on Power Systems.

[124]  Jooyoung Jeon,et al.  Using Conditional Kernel Density Estimation for Wind Power Density Forecasting , 2012 .

[125]  R. Koenker,et al.  Regression Quantiles , 2007 .

[126]  Saeid Nahavandi,et al.  A New Fuzzy-Based Combined Prediction Interval for Wind Power Forecasting , 2016, IEEE Transactions on Power Systems.

[127]  M. Shahidehpour,et al.  Security-Constrained Unit Commitment With Volatile Wind Power Generation , 2008, IEEE Transactions on Power Systems.

[128]  Rabih A. Jabr,et al.  Adjustable Robust OPF With Renewable Energy Sources , 2013, IEEE Transactions on Power Systems.

[129]  Yonggang Wu,et al.  An Advanced Approach for Construction of Optimal Wind Power Prediction Intervals , 2015, IEEE Transactions on Power Systems.

[130]  Jian Xu,et al.  A Versatile Mixture Distribution and Its Application in Economic Dispatch with Multiple Wind Farms , 2017, IEEE Transactions on Sustainable Energy.

[131]  M. C. Jones,et al.  Universal smoothing factor selection in density estimation: theory and practice , 1997 .

[132]  Vladimiro Miranda,et al.  Time-adaptive quantile-copula for wind power probabilistic forecasting , 2012 .

[133]  Chongqing Kang,et al.  Modeling Conditional Forecast Error for Wind Power in Generation Scheduling , 2014, IEEE Transactions on Power Systems.

[134]  A. Papavasiliou,et al.  Reserve Requirements for Wind Power Integration: A Scenario-Based Stochastic Programming Framework , 2011, IEEE Transactions on Power Systems.

[135]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[136]  M. Lange On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors , 2005 .

[137]  G. Papaefthymiou,et al.  Using Copulas for Modeling Stochastic Dependence in Power System Uncertainty Analysis , 2009, IEEE Transactions on Power Systems.

[138]  P Pinson,et al.  Conditional Prediction Intervals of Wind Power Generation , 2010, IEEE Transactions on Power Systems.

[139]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[140]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[141]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[142]  Yongqian Liu,et al.  An Integration of Enhanced Wind Power Interval Forecasting into Reactive Power Dispatching , 2013 .

[143]  H. Madsen,et al.  From probabilistic forecasts to statistical scenarios of short-term wind power production , 2009 .

[144]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[145]  C. Y. Chung,et al.  Novel Multi-Step Short-Term Wind Power Prediction Framework Based on Chaotic Time Series Analysis and Singular Spectrum Analysis , 2018, IEEE Transactions on Power Systems.

[146]  Yao Zhang,et al.  Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel , 2015 .

[147]  Saeid Nahavandi,et al.  Combined Nonparametric Prediction Intervals for Wind Power Generation , 2013, IEEE Transactions on Sustainable Energy.