Retrieval of Young Snow-Covered Sea-Ice Temperature and Salinity Evolution Through Radar Cross-Section Inversion

This paper utilizes an electromagnetic inverse-scattering algorithm to quantitatively reconstruct the vertical temperature and salinity profiles of snow-covered sea ice from time-series monostatic polarimetric normalized radar cross-section (NRCS) data. The reconstructed profile at a given time step is utilized to provide a priori information for the profile reconstruction at the subsequent time step. This successive use of a priori information in the inversion algorithm results in achieving high reconstruction accuracy over the time period of interest. This inversion scheme is evaluated against the experimental data collected from snow-covered sea ice grown in an Arctic ocean mesocosm facility. It will be shown that the time evolution of the temperature, salinity, and density profiles of an artificially grown snow-covered sea ice can be quantitatively reconstructed using single-frequency time-series radar cross-section data assuming that these profiles are initially known with sufficient accuracy.

[1]  Dustin Isleifson,et al.  Parameterization of Centimeter-Scale Sea Ice Surface Roughness Using Terrestrial LiDAR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[2]  D. G. Barber,et al.  Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type , 2014 .

[3]  Puyan Mojabi,et al.  Inversion-Based Sensitivity Analysis of Snow-Covered Sea Ice Electromagnetic Profiles , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Son V. Nghiem,et al.  The role of snow on microwave emission and scattering over first-year sea ice , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  Puyan Mojabi,et al.  Nonlinear Inversion of Microwave Scattering Data for Snow-Covered Sea-Ice Dielectric Profile Reconstruction , 2015, IEEE Geoscience and Remote Sensing Letters.

[6]  David Isaacson,et al.  Inverse electromagnetic scattering models for sea ice , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  David G. Barber,et al.  Electromagnetic Wave Scattering from Rough Boundaries Interfacing Inhomogeneous Media and Application to Snow-Covered Sea Ice , 2014 .

[8]  Joe LoVetri,et al.  A Monte Carlo Method for Simulating Scattering From Sea Ice Using FVTD , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Son V. Nghiem,et al.  Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements , 1998, IEEE Trans. Geosci. Remote. Sens..

[10]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[11]  A. Stogryn,et al.  The dielectric properties of brine in sea ice at microwave frequencies , 1985 .

[12]  Antonio Iodice,et al.  Electromagnetic Wave Scattering From Layered Structures With an Arbitrary Number of Rough Interfaces , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Georg Heygster,et al.  Sea Ice Emissivity Modeling at L-Band and Application to 2007 Pol-Ice Campaign Field Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[14]  N. Skou,et al.  Microwave signatures of the sea ice in the east Greenland current , 1984 .

[15]  A. Abubakar,et al.  Three‐dimensional seismic full‐waveform inversion using the finite‐difference contrast source inversion method , 2011 .

[16]  Son V. Nghiem,et al.  Polarimetric Signatures of Sea Ice , 2013 .

[17]  V. Isakov Uniqueness and stability in multi-dimensional inverse problems , 1993 .

[18]  David Isaacson,et al.  Forward electromagnetic scattering models for sea ice , 1998, IEEE Trans. Geosci. Remote. Sens..

[19]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[20]  C. Mätzler,et al.  ERRATUM: Dielectric properties of fresh-water ice at microwave frequencies , 1987 .

[21]  W. Lipscomb,et al.  Sea-ice models for climate study: retrospective and new directions , 2010, Journal of Glaciology.

[22]  An enhanced sea-ice thermodynamic model applied to the Baltic Sea , 2009 .

[23]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[24]  W. Johnstone,et al.  Simultaneous scatterometer and radiometer measurements of sea-ice microwave signatures , 1982 .

[25]  Ya-Qiu Jin,et al.  Polarimetric Scattering and SAR Information Retrieval: Jin/Polarimetric Scattering and SAR Information Retrieval , 2013 .

[26]  Joel T. Johnson,et al.  A numerical model for electromagnetic scattering from sea ice , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  Stephen E. L. Howell,et al.  Surface-Based Polarimetric C-Band Scatterometer for Field Measurements of Sea Ice , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Joel T. Johnson,et al.  A Study of the Fourth-Order Small Perturbation Method for Scattering From Two-Layer Rough Surfaces , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[29]  B. Cheng On the Modelling of Sea Ice Thermodynamics and Air-Ice Coupling in the Bohai Sea and the Baltic Sea , 2002 .

[30]  M. F. Meier,et al.  Remote sensing of snow and ice. , 1980 .

[31]  P. Rocca,et al.  Differential Evolution as Applied to Electromagnetics , 2011, IEEE Antennas and Propagation Magazine.

[32]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[33]  Wilford F. Weeks,et al.  Equations for Determining the Gas and Brine Volumes in Sea-Ice Samples , 1982, Journal of Glaciology.