Nonbirefringent bands in thin films of a copolymer melt: rapid rhythmic crystal growth with an unusual crystal–melt interface

A fascinating phenomenon of nonbirefringent bands that are comprised of repetitive stacks of discrete lamellae with a nearly flat-on orientation along the growth directions is first reported in a thin film of an asymmetric poly(e-caprolactone)-b-poly(ethylene oxide) during isothermal melt crystallization. More specifically, excepting the rapid growth kinetic of nonbirefringent banded crystals, in situ observations disclose an intriguingly wide halo adjacent to the depletion zone in the crystal–melt interface, implicating the presence of long range mass transfer that is a premise for the occurrence of micrometer-scale rhythmic crystallization.

[1]  G. Reiter,et al.  Controlling Polymer Crystallization Kinetics by Sample History , 2018 .

[2]  Fei Li,et al.  Parallel-stripe structures in PLLA/POM blend films , 2017 .

[3]  Haimu Ye,et al.  Organization of Twisting Lamellar Crystals in Birefringent Banded Polymer Spherulites: A Mini-Review , 2017 .

[4]  B. Lotz,et al.  Handedness of Twisted Lamella in Banded Spherulite of Chiral Polylactides and Their Blends , 2017 .

[5]  T. He,et al.  Morphological Control of Polymer Spherulites via Manipulating Radial Lamellar Organization upon Evaporative Crystallization: A Mini Review , 2017 .

[6]  T. He,et al.  Strong enhancement of the twisting frequency of achiral orthorhombic lamellae in poly(ε-caprolactone) banded spherulites via evaporative crystallization , 2017 .

[7]  G. Lugito,et al.  Periodic extinction bands composed of all flat-on lamellae in poly(dodecamethylene terephthalate) thin films crystallized at high temperatures , 2017 .

[8]  Q. Gu,et al.  Enhance understanding of rhythmic crystallization in confined evaporating polymer solution films: from environment to solution film and then to one period , 2016 .

[9]  J. Schultz,et al.  Polymer spherulites: A critical review , 2016 .

[10]  G. Lugito,et al.  Origins of periodic bands in polymer spherulites , 2015 .

[11]  Guangxian Li,et al.  Ring-banded spherulites of six-arm star-shaped poly(ε-caprolactone) with different arm length via CO2 , 2015, Colloid and Polymer Science.

[12]  E. Woo,et al.  Coexisting Straight, Radial, and Banded Lamellae on the Six Corners of Hexagon‐Shaped Spherulites in Poly(l‐Lactide) , 2014 .

[13]  R. Mülhaupt,et al.  Correlating polymer crystals via self-induced nucleation. , 2014, Physical review letters.

[14]  Haiying Huang,et al.  Tuning Radial Lamellar Packing and Orientation into Diverse Ring-Banded Spherulites: Effects of Structural Feature and Crystallization Condition , 2014 .

[15]  Sui-lin Liu,et al.  Concentric ring-banded spherulites of six-arm star-shaped poly(ε-caprolactone) via subcritical CO2 , 2014 .

[16]  B. Kahr,et al.  Growth actuated bending and twisting of single crystals. , 2014, Angewandte Chemie.

[17]  Xuesi Chen,et al.  Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(L-lactide) and ring banded supra-structures with radial periodic variation of thickness , 2014 .

[18]  Haiying Huang,et al.  Coupling between crystallization and evaporation dynamics: Periodically nonlinear growth into concentric ringed spherulites , 2013 .

[19]  Xuesi Chen,et al.  Confined lamella formation in crystalline-crystalline poly(ethylene oxide)-b-poly(ɛ-caprolactone) diblock copolymers , 2013, Chinese Journal of Polymer Science.

[20]  Xuesi Chen,et al.  Chloroform micro-evaporation induced ordered structures of poly(L-lactide) thin films , 2013 .

[21]  S. Nurkhamidah,et al.  Unconventional Non‐birefringent or Birefringent Concentric Ring‐Banded Spherulites in Poly(L‐lactic acid) Thin Films , 2013 .

[22]  Jun Li,et al.  Crystallization and morphology of star-shaped polyethylenoxyde-b-polycaprolactone under high pressure carbon dioxide , 2012, Chinese Journal of Polymer Science.

[23]  Xuesi Chen,et al.  Soft nanoconfinement effects on the crystallization behavior of asymmetric poly(ethylene oxide)‐block‐poly(ε‐ caprolactone) diblock copolymers , 2012 .

[24]  Haiying Huang,et al.  Band-to-Nonband Transition into Unique Poly(ε-caprolactone) Crystals by Modulating the Interplay of Diffusion and Growth. , 2012, ACS macro letters.

[25]  Stephen Z. D. Cheng,et al.  Solution Crystallization Behavior of Crystalline−Crystalline Diblock Copolymers of Poly(ethylene oxide)-block-poly(ε-caprolactone) , 2010 .

[26]  A. Müller,et al.  Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers , 2009 .

[27]  Zhijun Hu,et al.  Rhythmic Growth-Induced Ring-Banded Spherulites with Radial Periodic Variation of Thicknesses Grown from Poly(epsilon-caprolactone) Solution with Constant Concentration , 2008 .

[28]  Jian Chen,et al.  Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) and poly(aryl ether ether ketone) , 2007 .

[29]  Yongzhong Chen,et al.  Rhythmic growth-induced concentric ring-banded structures in poly(epsilon-caprolactone) solution-casting films obtained at the slow solvent evaporation , 2007 .

[30]  Chaoliang He,et al.  Composition dependence of the crystallization behavior and morphology of the poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer. , 2006, Biomacromolecules.

[31]  C. Chan,et al.  Concentric-ringed structures in polymer thin films. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  Chaoliang He,et al.  Morphology and Structure of Single Crystals of Poly(ethylene glycol)−Poly(ε-caprolactone) Diblock Copolymers , 2006 .

[33]  Shouke Yan,et al.  In situ AFM study of the growth of banded hedritic structures in thin films of isotactic polystyrene , 2005 .

[34]  R. Prud’homme,et al.  In-situ hot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin films , 2005 .

[35]  Jian Chen,et al.  Phase Behavior and Rhythmically Grown Ring-Banded Spherulites in Blends of Liquid Crystalline Poly(aryl ether ketone) and Poly(aryl ether ether ketone) , 2005 .

[36]  Stephen Z. D. Cheng,et al.  A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals , 2005 .

[37]  Shouke Yan,et al.  Depletion-induced nonbirefringent banding in thin isotactic polystyrene thin films , 2004 .

[38]  H. D. Keith Banding in spherulites : two recurring topics , 2001 .

[39]  T. Kyu,et al.  Rhythmic Growth of Target and Spiral Spherulites of Crystalline Polymer Blends , 1999 .

[40]  L. An,et al.  Periodic radial growth in ring‐banded spherulites of poly(ε‐caprolactone)/poly(styrene‐co‐acrylonitrile) blends , 1998 .

[41]  Temkin,et al.  Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  H. D. Keith,et al.  Twisting orientation and the role of transient states in polymer crystallization , 1984 .

[43]  H. D. Keith,et al.  A Phenomenological Theory of Spherulitic Crystallization , 1963 .