Lattice Boltzmann Simulation of Two-Fluid Model Equations

An implicit lattice Boltzmann equation to simulate the locally averaged flow behavior of disperse two-phase mixtures is presented. Using a multiscale expansion technique, it is shown that these equations reduce to the widely used two-fluid model for flows of such suspensions. The viability of the lattice Boltzmann approach is demonstrated through illustrative examples. The lattice Boltzmann scheme is easy to program and it parallelizes readily. It is suggested that this approach may serve as an attractive alternative to conventional approaches to solving the two-fluid model equations.

[1]  C. Wen Mechanics of Fluidization , 1966 .

[2]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[3]  M. A. Cayless Statistical Mechanics (2nd edn) , 1977 .

[4]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[5]  R. Jackson,et al.  Gas‐particle flow in a vertical pipe with particle‐particle interactions , 1989 .

[6]  D. Gidaspow,et al.  A bubbling fluidization model using kinetic theory of granular flow , 1990 .

[7]  Sankaran Sundaresan,et al.  Gas‐solid flow in vertical tubes , 1991 .

[8]  František Kaštánek,et al.  Chemical reactors for gas-liquid systems , 1992 .

[9]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[10]  E. Flekkøy,et al.  Lattice Boltzmann models for complex fluids , 1993, cond-mat/9307017.

[11]  Shiyi Chen,et al.  Stability Analysis of Lattice Boltzmann Methods , 1993, comp-gas/9306001.

[12]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[14]  A. Mersmann,et al.  Chemical Reactors for Gas-Liquid Systems. Von F. Kastánek, J. Zahradnik, J. Kratochvil und C. Cermák. Ellis Horwood, New York 1993. 406 S., mit zahlr. Abb. und Tab., geb., £ 117,50. , 1994 .

[15]  J. A. Somers,et al.  Numerical simulation of free convective flow using the lattice-Boltzmann scheme , 1995 .

[16]  Y. Qian,et al.  Lattice-BGK approach to simulating granular flows , 1995 .

[17]  I. Kevrekidis,et al.  One- and two-dimensional travelling wave solutions in gas-fluidized beds , 1996, Journal of Fluid Mechanics.

[18]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[19]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[20]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[21]  R. Worthing,et al.  Stability of lattice Boltzmann methods in hydrodynamic regimes , 1997 .

[22]  R. Jackson,et al.  Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid , 1997 .

[23]  Xiaowen Shan,et al.  SIMULATION OF RAYLEIGH-BENARD CONVECTION USING A LATTICE BOLTZMANN METHOD , 1997 .

[24]  Nicos Martys,et al.  Evaluation of the external force term in the discrete Boltzmann equation , 1998 .

[25]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[26]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[27]  Ioannis G. Kevrekidis,et al.  From Bubbles to Clusters in Fluidized Beds , 1998 .

[28]  D. Koch,et al.  Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations , 1999, Journal of Fluid Mechanics.

[29]  Rajamani Krishna,et al.  Modelling sieve tray hydraulics using computational fluid dynamics , 2000 .

[30]  R. Jackson,et al.  The Dynamics of Fluidized Particles , 2000 .

[31]  A. Neri,et al.  Riser hydrodynamics: Simulation using kinetic theory , 2000 .

[32]  Lattice-Boltzmann algorithm for simulating thermal two-phase flow , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  V. Swaaij,et al.  Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics , 2000 .

[34]  H. Arastoopour,et al.  Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase , 2000 .

[35]  Anthony J. C. Ladd,et al.  The first effects of fluid inertia on flows in ordered and random arrays of spheres , 2001, Journal of Fluid Mechanics.

[36]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[37]  D. Snider An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows , 2001 .

[38]  S. Sundaresan,et al.  The role of meso-scale structures in rapid gas–solid flows , 2001, Journal of Fluid Mechanics.

[39]  A. Ladd,et al.  Moderate-Reynolds-number flows in ordered and random arrays of spheres , 2001, Journal of Fluid Mechanics.

[40]  Ioannis G. Kevrekidis,et al.  Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method , 2002, Journal of Fluid Mechanics.

[41]  Sankaran Sundaresan,et al.  Lift force in bubbly suspensions , 2002 .

[42]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. Ladd,et al.  Rheology of suspensions with high particle inertia and moderate fluid inertia , 2003, Journal of Fluid Mechanics.

[44]  Rajamani Krishna,et al.  MODELLING SIEVE TRAY HYDRAULICS USING COMPUTATIONAL FLUID DYNAMICS , 2000 .

[45]  D. Kandhai,et al.  Interphase drag coefficients in gas–solid flows , 2003 .

[46]  Dimitri Gidaspow,et al.  Hydrodynamics of fluidization using kinetic theory: an emerging paradigm: 2002 Flour-Daniel lecture , 2004 .

[47]  Jinfu Wang,et al.  Two-fluid model based on the lattice Boltzmann equation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  J. Kuipers,et al.  Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force , 2005, Journal of Fluid Mechanics.

[49]  Madhava Syamlal,et al.  Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction , 2006 .

[50]  J. Kuipers,et al.  Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres , 2007 .

[51]  Jam Hans Kuipers,et al.  Effect of competition between particle-particle and gas-particle interactions on flow patterns in dense gas-fluidized beds , 2007 .

[52]  J. Derksen,et al.  Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds , 2007, Journal of Fluid Mechanics.