Single crystal functional oxides on silicon

Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon.

[1]  Hidemi Takasu,et al.  Ferroelectric memories and their applications , 2001 .

[2]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[3]  Koichi Kuroiwa,et al.  Interaction of PbTiO3 Films with Si Substrate , 1994 .

[4]  W. F. Peck,et al.  Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1–xCaxRuO3 (0 ≤ x ≤ 1) , 1992, Science.

[5]  Shigeki Sakai,et al.  Recent Progress of Ferroelectric-Gate Field-Effect Transistors and Applications to Nonvolatile Logic and FeNAND Flash Memory , 2010, Materials.

[6]  K. Vahala,et al.  Integration of Single‐Crystal LiNbO3 Thin Film on Silicon by Laser Irradiation and Ion Implantation– Induced Layer Transfer , 2006 .

[7]  M. Ziese,et al.  An alternative route towards micro- and nano-patterning of oxide films , 2012, Nanotechnology.

[8]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[9]  Yi Wang,et al.  Epitaxial ferroelectric Pb(Zr, Ti)O3 thin films on Si using SrTiO3 template layers , 2002 .

[10]  A. Chin,et al.  Stack gate PZT/Al2O3 one transistor ferroelectric memory , 2001, IEEE Electron Device Letters.

[11]  Catherine Dubourdieu,et al.  Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode. , 2013, Nature nanotechnology.

[12]  Xiaoqing Pan,et al.  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures , 2011, 1103.4419.

[13]  Zhongfan Liu,et al.  Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. , 2008, Journal of the American Chemical Society.

[14]  Hiroshi Ishiwara,et al.  Low Voltage Operation of Nonvolatile Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS)-Field-Effect-Transistors (FETs) Using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si Structures , 2001 .

[15]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[16]  Richard M. Osgood,et al.  Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .

[17]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[18]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[19]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[20]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[21]  Marin Alexe,et al.  Wafer bonding : applications and technology , 2004 .

[22]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[23]  A. Duparré,et al.  Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. , 2002, Applied optics.

[24]  I. Gheorma,et al.  Single-crystal barium titanate thin films by ion slicing , 2003 .

[25]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[26]  T. Sands,et al.  Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth , 1993 .

[27]  D. Muller,et al.  A Ferroelectric Oxide Made Directly on Silicon , 2009, Science.

[28]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[29]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[30]  J. Mannhart,et al.  Very Large Capacitance Enhancement in a Two-Dimensional Electron System , 2010, Science.

[31]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[32]  J. Junquera,et al.  Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. , 2011, Physical review letters.

[33]  Y. Tarui,et al.  Formation of Metal/Ferroelectric/Insulator/Semiconductor Structure with a CeO2 Buffer Layer , 1994 .

[34]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[35]  E. Defaÿ Ferroelectric dielectrics integrated on silicon , 2011 .

[36]  R. Cavin,et al.  Nanoelectronics: negative capacitance to the rescue? , 2008, Nature nanotechnology.