Sensitivities of an adjoint, unstructured mesh, tidal model on the European Continental Shelf

Unstructured mesh models can resolve the model domain with a variable and very fine mesh resolution. Nevertheless, tuning the model setup is still required (for example because of parametrized sub-grid processes). Adjoint models are commonly used to calculate sensitivities of ocean models and optimize their parameters so that better agreement is achieved between model simulations and observations. One major obstacle in developing an adjoint model is the need to update the reverse code after each modification of the forward code, which is not always straightforward. Automatic differentiation is a tool to generate the adjoint model code without user input. So far this method has mainly been used for structured mesh ocean models. We present here an unstructured mesh, adjoint, tidal model using this technique, and discuss the sensitivities of the misfit between simulated and observed elevations with respect to open boundary values, the bottom friction coefficient and the bottom topography. The forward model simulates tides on the European Continental Shelf and we show that the tidal model dynamics in the adjoint simulations can be used to define regions, where parameters or mesh has to be optimized. We analyze the dependence of the sensitivities on the wave type and mesh resolution to specify whether the model misfit originates from physical or numerical model deficiencies. In the sensitivity patterns, it is possible to identify islands not resolved in the mesh. We propose to refine the mesh prior to the parameter optimization.

[1]  Francois Thomasset,et al.  A noise-free finite element scheme for the two-layer shallow water equations , 1984 .

[2]  C. Provost,et al.  Ocean Tides for and from TOPEX/POSEIDON , 1995, Science.

[3]  J. Hervouet Hydrodynamics of Free Surface Flows , 2007 .

[4]  A. Cavanie Equations des ressauts internes dans un système à deux couches et leurs solutions , 1973 .

[5]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[6]  R. W. Lardner,et al.  VARIATIONAL PARAMETER ESTIMATION FOR A TWO-DIMENSIONAL NUMERICAL TIDAL MODEL , 1992 .

[7]  Zhongfeng Qiu,et al.  Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/POSEIDON altimeter data , 2004 .

[8]  A. Bennett Inverse Methods in Physical Oceanography , 1992 .

[9]  D. Lynch,et al.  Inverse Model for Limited-Area Hindcasts on the Continental Shelf* , 2001 .

[10]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Frontmatter , 1992 .

[11]  A. Heemink,et al.  IDENTIFICATION OF SHALLOW SEA MODELS , 1993 .

[12]  Bertil Gustafsson,et al.  Incompletely parabolic problems in fluid dynamics , 1978 .

[13]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[14]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[15]  Bruce Parker,et al.  Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique , 2003 .

[16]  A. H. Al-Rabeh,et al.  Optimal estimation of parameters for a two‐dimensional hydrodynamical model of the Arabian Gulf , 1993 .

[17]  J. D. Vance,et al.  Seasonal variation of diurnal perturbations in mesopause region temperature, zonal, and meridional winds above Fort Collins, Colorado (40.6°N, 105°W) , 2006 .

[18]  Patrick Heimbach,et al.  An efficient exact adjoint of the parallel MIT General Circulation Model, generated via automatic differentiation , 2005, Future Gener. Comput. Syst..

[19]  E. Blayo,et al.  Revisiting open boundary conditions from the point of view of characteristic variables , 2005 .

[20]  Jens Schröter,et al.  Parameter Estimation in Dynamical Models , 1998 .

[21]  M. Wenzel,et al.  Assimilation of TOPEX/Poseidon data in a global ocean model: differences in 1995?1996 , 2002 .

[22]  Dirk Olbers,et al.  The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation , 2001 .

[23]  Sergey Danilov,et al.  Intercomparison between finite element and finite volume approaches to model North Sea tides , 2010 .

[24]  Emmanuel Hanert,et al.  A tale of two elements: P1NC-P1 and RT0 , 2009 .

[25]  O. Andersen Application of inversion to global ocean tide mapping: Preliminary results constrained by observations in the Baltic Sea , 1996 .

[26]  Pierre F. J. Lermusiaux,et al.  Inverse barotropic tidal estimation for regional ocean applications , 2008 .

[27]  Martin Verlaan,et al.  Operational storm surge forecasting in the Netherlands: developments in the last decade , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Silvia Maßmann,et al.  Tides on unstructured meshes , 2010 .

[29]  Jens Schröter,et al.  Variational Assimilation of Geosat Data into an Eddy-resolving Model of the Gulf Stream Extension Area , 1993 .

[30]  R. He,et al.  Barotropic tides on the southeast New England shelf : a view from a hybrid data assimilative modeling approach , 2006 .

[31]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[32]  Jörn Behrens,et al.  Tsunami simulations on several scales , 2008 .

[33]  G. Taylor Tidal Friction in the Irish Sea , 1919 .

[34]  R. Flather A tidal model of the north-west European continental shelf , 1976 .

[35]  C. Chevalier,et al.  Investigation on passive open boundary conditions adapted to the conjunction of strong currents, standing tidal wave and high stratification: Application to the French Guiana Continental Shelf , 2005 .

[36]  Zhaoqing Yang,et al.  Optimal control of salinity boundary condition in a tidal model using a variational inverse method , 2005 .

[37]  I. Shulman,et al.  Optimized Boundary Conditions and Data Assimilation with Application to the M2 Tide in the Yellow Sea , 1998 .

[38]  Alexey Androsov,et al.  Open boundary conditions for horizontal 2-D curvilinear-grid long-wave dynamics of a strait , 1995 .

[39]  Arnold W. Heemink,et al.  Inverse 3D shallow water flow modelling of the continental shelf , 2002 .

[40]  S. Dmitry The North Atlantic circulation derived from inverse models , 2005 .

[41]  Daniel Y. Le Roux,et al.  Dispersion Relation Analysis of the $P^NC_1 - P^_1$ Finite-Element Pair in Shallow-Water Models , 2005, SIAM J. Sci. Comput..

[42]  J. Schröter,et al.  An Adjoint Ocean Model Using Finite Elements: An Application to the South Atlantic , 2003 .

[43]  Paul D. Williams A Proposed Modification to the Robert–Asselin Time Filter* , 2009 .

[44]  A. M. Davies,et al.  A three-dimensional model of diurnal and semidiurnal tides on the European shelf , 1997 .

[45]  R. Giering,et al.  Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity , 1999 .