Titanium Nitride Plasmonic Nanohole Arrays for CMOS-Compatible Integrated Refractive Index Sensing: Influence of Layer Thickness on Optical Properties

[1]  C. Wenger,et al.  Integration Aspects of Plasmonic TiN-based Nano-Hole-Arrays on Ge Photodetectorsin a 200mm Wafer CMOS Compatible Silicon Technology , 2022, ECS Transactions.

[2]  R. H. Sagor,et al.  A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection , 2022, Optics Communications.

[3]  B. Xu,et al.  Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. , 2021, ACS nano.

[4]  R. H. Sagor,et al.  Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. , 2021, Optics express.

[5]  M. Struzik,et al.  Titanium Nitride as a Plasmonic Material from Near-Ultraviolet to Very-Long-Wavelength Infrared Range , 2021, Materials.

[6]  R. H. Sagor,et al.  Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing arena , 2021, Results in Physics.

[7]  R. H. Sagor,et al.  Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor , 2021, Sensing and Bio-Sensing Research.

[8]  Ibrahim Abdulhalim,et al.  Plasmonic biosensors for food control , 2021 .

[9]  A. Hocini,et al.  Design and analysis of near infrared high sensitive metal-insulator-metal plasmonic bio-sensor , 2021 .

[10]  C. Du,et al.  Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers , 2019, Nanotechnology.

[11]  Houtong Chen,et al.  Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering , 2019, Scientific Reports.

[12]  S. Gwo,et al.  Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold , 2019, ACS Photonics.

[13]  Surinder Singh,et al.  Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications , 2019, Optical Fiber Technology.

[14]  J. Schulze,et al.  Integrated Collinear Refractive Index Sensor with Ge PIN Photodiodes , 2018, ACS Photonics.

[15]  Nikolay I. Zheludev,et al.  Roadmap on plasmonics , 2018 .

[16]  I. Shimoyama,et al.  Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode , 2018 .

[17]  Andrei V. Lavrinenko,et al.  High aspect ratio titanium nitride trench structures as plasmonic biosensor , 2017 .

[18]  P. Wei,et al.  Enhancing the Surface Sensitivity of Metallic Nanostructures Using Oblique-Angle-Induced Fano Resonances , 2016, Scientific Reports.

[19]  Nikolaos Kalfagiannis,et al.  Optical Properties and Plasmonic Performance of Titanium Nitride , 2015, Materials.

[20]  B. Cui,et al.  Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor , 2015, Nanoscale Research Letters.

[21]  Hadi Shafiee,et al.  Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection , 2015, Scientific Reports.

[22]  R. T. Hill,et al.  Plasmonic biosensors. , 2015, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[23]  S. Patskovsky,et al.  Integrated Si‐based nanoplasmonic sensor with phase‐sensitive angular interrogation , 2013 .

[24]  S. Gray Theory and Modeling of Plasmonic Structures , 2013 .

[25]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[26]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[27]  Chih‐Hao Lee,et al.  A Comparison Between X-ray Reflectivity and Atomic Force Microscopy on the Characterization of a Surface Roughness , 2012 .

[28]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[29]  A. Z. Nezhad,et al.  Effect of surface roughness on propagation of surface plasmon polaritons along thin lossy metal films , 2011, Iranian Conference on Electrical Engineering.

[30]  Fredrik Höök,et al.  Nanoplasmonic biosensing with on-chip electrical detection. , 2010, Biosensors & bioelectronics.

[31]  Guy A. E. Vandenbosch,et al.  On the use of the Method of Moments in plasmonic applications , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[32]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[33]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[34]  M H Lee,et al.  Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. , 2009, Optics express.

[35]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[36]  Chih-Hao Lee,et al.  Comparison between the atomic force microscopy and x-ray reflectivity on the characterization of the roughness of a surface , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[38]  Bruce Archambeault,et al.  EMI/EMC Computational Modeling Handbook , 1998 .

[39]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[40]  A. V. Kats,et al.  Extraordinary optical transmission through hole arrays in optically thin metal films. , 2009, Optics letters.

[41]  Shanhui Fan,et al.  OVERVIEW OF SIMULATION TECHNIQUES FOR PLASMONIC DEVICES , 2007 .

[42]  V. Owen Real-time optical immunosensors - a commercial reality , 1997 .