Photoinduced Copper-Catalyzed Late-Stage Azidoarylation of Alkenes via Arylthianthrenium Salts

The arylethylamine pharmacophore is conserved across a range of biologically active natural products and pharmaceuticals, particularly in molecules that act on the central nervous system. Herein, we present a photoinduced copper-catalyzed azidoarylation of alkenes at a late stage with arylthianthrenium salts, allowing access to highly functionalized acyclic (hetero)arylethylamine scaffolds that are otherwise difficult to access. A mechanistic study is consistent with a rac-BINAP-CuI-azide (2) as the photoactive catalytic species. We show the utility of the new method by the expedient synthesis of racemic melphalan in four steps through C–H functionalization.

[1]  Yinlong Guo,et al.  Cu-Mediated Thianthrenation and Phenoxathiination of Arylborons. , 2023, Journal of the American Chemical Society.

[2]  Neel H. Shah,et al.  Modular Synthesis of Unnatural Peptides via Rh(III)-Catalyzed Diastereoselective Three-Component Carboamidation Reaction. , 2022, Journal of the American Chemical Society.

[3]  G. Evano,et al.  Photoactive Copper Complexes: Properties and Applications. , 2022, Chemical reviews.

[4]  T. Ritter,et al.  Meerwein‐type Bromoarylation with Arylthianthrenium Salts , 2022, Angewandte Chemie.

[5]  D. Pratt,et al.  Mechanism of Visible Light-Mediated Alkene Aminoarylation with Arylsulfonylacetamides. , 2022, ACS catalysis.

[6]  Qiu Wang,et al.  Recent Advances in 1,2-Amino(hetero)arylation of Alkenes. , 2022, Chemistry, an Asian journal.

[7]  K. Hirano,et al.  Hydroamination, Aminoboration, and Carboamination with Electrophilic Amination Reagents: Umpolung-Enabled Regio- and Stereoselective Synthesis of N-Containing Molecules from Alkenes and Alkynes. , 2022, Journal of the American Chemical Society.

[8]  D. Procter,et al.  A general arene C–H functionalization strategy via electron donor–acceptor complex photoactivation , 2021, Nature Chemistry.

[9]  Da Zhao,et al.  Tritiation of aryl thianthrenium salts with a molecular palladium catalyst , 2021, Nature.

[10]  Sumon Sarkar,et al.  Visible Light-Induced Transition Metal Catalysis. , 2021, Chemical reviews.

[11]  Matthew B. Plutschack,et al.  High Site Selectivity in Electrophilic Aromatic Substitutions: Mechanism of C–H Thianthrenation , 2021, Journal of the American Chemical Society.

[12]  M. Gaunt,et al.  Multicomponent alkene azidoarylation by anion-mediated dual catalysis , 2021, Nature.

[13]  A. Studer,et al.  Three‐Component Aminoarylation of Electron‐Rich Alkenes by Merging Photoredox with Nickel Catalysis , 2021, Angewandte Chemie.

[14]  T. Rovis,et al.  Rh(III)-Catalyzed Three-Component Syn-Carboamination of Alkenes Using Arylboronic Acids and Dioxazolones. , 2021, ACS catalysis.

[15]  Xiuguang Wang,et al.  Directed nickel-catalyzed regio- and diastereoselective arylamination of unactivated alkenes , 2021, Nature Communications.

[16]  K. Engle,et al.  Nickel-Catalyzed 1,2-Carboamination of Alkenyl Alcohols. , 2021, Journal of the American Chemical Society.

[17]  W. Shu,et al.  Direct Access to Primary Amines from Alkenes via Selective Metal-Free Hydroamination. , 2021, Angewandte Chemie.

[18]  Fei Wang,et al.  Anionic Bisoxazoline Ligands Enable Copper-Catalyzed Asymmetric Radical Azidation of  Acrylamides. , 2020, Angewandte Chemie.

[19]  N. Cramer,et al.  Cobalt(III)-Catalyzed Enantioselective Intermolecular Carboaminations via C-H Functionalizations. , 2020, Angewandte Chemie.

[20]  Sungwoo Hong,et al.  Visible-Light-Enabled Ortho-Selective Aminopyridylation of Alkenes with N-Aminopyridinium Ylides. , 2020, Journal of the American Chemical Society.

[21]  C. Cramer,et al.  Site-Selective Copper-Catalyzed Azidation of Benzylic C-H Bonds. , 2020, Journal of the American Chemical Society.

[22]  Junyi Liu,et al.  Synthesis of β-Phenethylamines via Ni/Photoredox Cross-Electrophile Coupling of Aliphatic Aziridines and Aryl Iodides. , 2020, Journal of the American Chemical Society.

[23]  Adam H. C. West,et al.  Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation , 2020, Nature Catalysis.

[24]  A. Schnegg,et al.  Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination , 2019, Nature Chemistry.

[25]  Da Zhao,et al.  Site‐Selective Late‐Stage Aromatic [18F]Fluorination via Aryl Sulfonium Salts , 2019, Angewandte Chemie.

[26]  A. Studer,et al.  Asymmetric Synthesis of Heterocyclic γ-Amino Acid and Diamine Derivatives by Three-Component Radical Cascade Reactions. , 2019, Angewandte Chemie.

[27]  M. Baik,et al.  Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents , 2019, Nature Communications.

[28]  Matthew B. Plutschack,et al.  Site-selective and versatile aromatic C−H functionalization by thianthrenation , 2019, Nature.

[29]  N. Jui,et al.  Catalytic Strategy for Regioselective Arylethylamine Synthesis. , 2019, Journal of the American Chemical Society.

[30]  C. Stephenson,et al.  Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation , 2018, Science.

[31]  F. Bracher Methods for Arylethylation of Amines and Heteroarenes , 2018, SynOpen.

[32]  Stalin R Pathipati,et al.  Nickel-Catalyzed 1,2-Aminoarylation of Oxime Ester-Tethered Alkenes with Boronic Acids , 2017 .

[33]  Zhi Liu,et al.  An Intermolecular Azidoheteroarylation of Simple Alkenes via Free-Radical Multicomponent Cascade Reactions. , 2017, Organic letters.

[34]  Peng Liu,et al.  Catalytic Intermolecular Carboamination of Unactivated Alkenes via Directed Aminopalladation. , 2017, Journal of the American Chemical Society.

[35]  Fei Wang,et al.  Asymmetric Copper-Catalyzed Intermolecular Aminoarylation of Styrenes: Efficient Access to Optical 2,2-Diarylethylamines. , 2017, Journal of the American Chemical Society.

[36]  N. Jui,et al.  Anti-Markovnikov Hydroarylation of Unactivated Olefins via Pyridyl Radical Intermediates. , 2017, Journal of the American Chemical Society.

[37]  Pinhong Chen,et al.  Enantioselective Palladium(II)-Catalyzed Intramolecular Aminoarylation of Alkenes by Dual N-H and Aryl C-H Bond Cleavage. , 2017, Angewandte Chemie.

[38]  F. Glorius,et al.  Unnatural Amino Acid Synthesis Enabled by the Regioselective Cobalt(III)-Catalyzed Intermolecular Carboamination of Alkenes. , 2016, Angewandte Chemie.

[39]  Xiaofeng Tong,et al.  Rhodium(III) Catalyzed Carboamination of Alkenes Triggered by C-H Activation of N-Phenoxyacetamides under Redox-Neutral Conditions. , 2016, Organic letters.

[40]  J. Groves,et al.  Taming Azide Radicals for Catalytic C–H Azidation , 2016 .

[41]  T. Rovis,et al.  Rh-Catalyzed Intermolecular Syn-Carboamination of Alkenes via a Transient Directing Group , 2015, Nature.

[42]  T. Jamison,et al.  Highly Regioselective Indoline Synthesis under Nickel/Photoredox Dual Catalysis. , 2015, Journal of the American Chemical Society.

[43]  C. Nevado,et al.  Arylphosphonylation and arylazidation of activated alkenes. , 2014, Angewandte Chemie.

[44]  Durga Prasad Hari,et al.  The photoredox-catalyzed Meerwein addition reaction: intermolecular amino-arylation of alkenes. , 2014, Angewandte Chemie.

[45]  G. Fumagalli,et al.  Oxyarylation and aminoarylation of styrenes using photoredox catalysis. , 2013, Organic letters.

[46]  G. C. Fu,et al.  Photoinduced Ullmann C–N Coupling: Demonstrating the Viability of a Radical Pathway , 2012, Science.

[47]  S. Stahl,et al.  Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. , 2011, Chemical reviews.

[48]  Dan Yang,et al.  Pd(II)-catalyzed intramolecular amidoarylation of alkenes with molecular oxygen as sole oxidant. , 2011, Organic letters.

[49]  Nicholas A. McGrath,et al.  A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives , 2010 .

[50]  W. Goddard,et al.  Gold-catalyzed intramolecular aminoarylation of alkenes: C-C bond formation through bimolecular reductive elimination. , 2010, Angewandte Chemie.

[51]  Liming Zhang,et al.  Homogeneous gold-catalyzed oxidative carboheterofunctionalization of alkenes. , 2010, Journal of the American Chemical Society.

[52]  S. Mascarella,et al.  Structure-activity correlations for beta-phenethylamines at human trace amine receptor 1. , 2008, Bioorganic & medicinal chemistry.

[53]  W. Zeng,et al.  Copper(II)-catalyzed enantioselective intramolecular carboamination of alkenes. , 2007, Journal of the American Chemical Society.

[54]  M. Heinrich,et al.  Reductive carbodiazenylation of nonactivated olefins via aryl diazonium salts. , 2006, Organic letters.

[55]  J. Wolfe,et al.  Palladium-catalyzed synthesis of N-aryl pyrrolidines from gamma-(N-Arylamino) alkenes: evidence for chemoselective alkene insertion into Pd--N bonds. , 2004, Angewandte Chemie.

[56]  T. B. Tan,et al.  Copper(II) acetate promoted oxidative cyclization of arylsulfonyl-o-allylanilines. , 2004, Organic letters.

[57]  J. Aubé,et al.  New copper(I)-catalyzed reactions of oxaziridines: stereochemical control of product distribution , 1992 .

[58]  V. Bowry,et al.  Calibration of a new horologery of fast radical clocks. Ring-opening rates for ring- and .alpha.-alkyl-substituted cyclopropylcarbinyl radicals and for the bicyclo[2.1.0]pent-2-yl radical , 1991 .

[59]  Danielle M. Schultz,et al.  Recent Developments in Palladium-CatalyzedAlkene Aminoarylation Reactions for the Synthesis of NitrogenHeterocycles , 2012 .