Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media

In this paper, we develop local discontinuous Galerkin method for the two-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in $$L^{\infty }(0, T; L^{2})$$L∞(0,T;L2) for concentration c, $$L^{2}(0, T; L^{2})$$L2(0,T;L2) for $$\nabla c$$∇c and $$L^{\infty }(0, T; L^{2})$$L∞(0,T;L2) for velocity $$\mathbf{u}$$u are derived. The main techniques in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments are shown to demonstrate the theoretical results.

[1]  Yang Yang,et al.  A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media , 2014 .

[2]  Qiang Zhang,et al.  Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems , 2016 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[5]  Jean E. Roberts,et al.  Upstream weighting and mixed finite elements in the simulation of miscible displacements , 1985 .

[6]  I. M. Gelfand,et al.  Some questions of analysis and differential equations , 1987 .

[7]  Haijin Wang,et al.  Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems , 2016, Appl. Math. Comput..

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  Richard E. Ewing,et al.  Efficient Time-Stepping Methods for Miscible Displacement Problems in Porous Media , 1982 .

[10]  Chi-Wang,et al.  ANALYSIS OF SHARP SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS , 2015 .

[11]  Stella Krell,et al.  Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media , 2015 .

[12]  B. Rivière,et al.  A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .

[13]  Sören Bartels,et al.  Discontinuous Galerkin Finite Element Convergence for Incompressible Miscible Displacement Problems of Low Regularity , 2009, SIAM J. Numer. Anal..

[14]  Sarvesh Kumar A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media , 2012 .

[15]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[16]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[17]  Richard E. Ewing,et al.  Galerkin Methods for Miscible Displacement Problems in Porous Media , 1979 .

[18]  Richard E. Ewing,et al.  The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[21]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[22]  M. Wheeler,et al.  Discontinuous Galerkin methods for coupled flow and reactive transport problems , 2005 .

[23]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[24]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[25]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[26]  Brahim Amaziane,et al.  Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods , 2008 .

[27]  Chi-Wang Shu,et al.  ANALYSIS OF OPTIMAL SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS , 2013 .

[28]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[29]  Hongxing Rui,et al.  A MCC finite element approximation of incompressible miscible displacement in porous media , 2015, Comput. Math. Appl..

[30]  D. Yang Mixed methods with dynamic finite-element spaces for miscible displacement in porous media , 1990 .

[31]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[32]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[33]  P. Raats,et al.  Dynamics of Fluids in Porous Media , 1973 .

[34]  Richard E. Ewing,et al.  A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media , 1983 .

[35]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[36]  Mingrong Cui,et al.  Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem , 2008 .

[37]  Haijin Wang,et al.  Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems , 2015, SIAM J. Numer. Anal..

[38]  Dong Liang,et al.  An Approximation to Miscible Fluid Flows in Porous Media with Point Sources and Sinks by an Eulerian-Lagrangian Localized Adjoint Method and Mixed Finite Element Methods , 2000, SIAM J. Sci. Comput..

[39]  T. F. Russell,et al.  Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics , 1984 .

[40]  Yuting Wei Stabilized finite element methods for miscible displacement in porous media , 1994 .

[41]  D. H. Sattinger,et al.  Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients , 1968 .