Efficient Strategies for Automated Reasoning in Modal Logics

In Automated Deduction for non classical logics and specially for modal logics, efficient (and not only complete) strategies are needed. Ordering strategies are presented for the Fitting's tableaux calculi. Besides orderings of tableaux rules, different variants for backtracking are used. The strategies apply to most usual propositional modal logics: K, T, K4, S4, D, D4, C, CT, C4, CS4, CD, CD4, G. More precisely, they apply to logics for which there exists a tableaux calculus such that the number of sets of formulas introduced in a tree is finite -the analytic tableaux systems satisfy this requirement. The strategies are proved to be complete for most of these logics. The results are presented for S4. The strategies have been implemented and extensively experimented in the tableaux theorem prover running on our Inference Laboratory ATINF. Experiments have shown the efficiency of some of the proposed strategies.

[1]  Richard B. Scherl,et al.  A Constraint Logic Approach to Modal Deduction , 1990, JELIA.

[2]  James P. Delgrande,et al.  Tableau-Based Theorem Proving In Normal Conditional Logics , 1988, AAAI.

[3]  Stéphane Demri,et al.  Cooperation between Direct Method and Translation Method in Non Classical Logics: Some Results in Propositional S5 , 1993, IJCAI.

[4]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[5]  Kurt Konolige,et al.  Resolution and Quantified Epistemic Logics , 1986, CADE.

[6]  Ewa Orlowska Relational proof systems for some AI logics , 1991, FAIR.

[7]  Luis Fariñas del Cerro,et al.  Un Principe de Résolution en Logique Modale , 1984, RAIRO Theor. Informatics Appl..

[8]  Hans Jürgen Ohlbach,et al.  Optimized Translation of Multi Modal Logic into Predicate Logic , 1993, LPAR.

[9]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[10]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[11]  K. Konolige A deduction model of belief , 1986 .

[12]  Joseph Y. Halpern,et al.  A Guide to the Modal Logics of Knowledge and Belief: Preliminary Draft , 1985, IJCAI.

[13]  J. McCarthy Formalization of two Puzzles Involving Knowledge , 1987 .

[14]  Ewa Orlowska Resolution systems and their applications II , 1980, Fundam. Informaticae.

[15]  José Meseguer,et al.  May I Borrow Your Logic? , 1993, MFCS.

[16]  T. Käufl,et al.  Cooperation of decision procedures in a tableau-based theorem prover , 1990 .

[17]  Andreas Herzig Raisonnement automatique en logique modale et algorithmes d'unification , 1989 .

[18]  J. Hintikka Knowledge and belief , 1962 .

[19]  R. Smullyan First-Order Logic , 1968 .

[20]  Ricardo Caferra,et al.  GLEFATINF: A Graphic Framework for Combining Theorem Provers and Editing Proofs for Different Logics , 1993, DISCO.

[21]  Michael A. McRobbie,et al.  The KRIPKE Automated Theorem Proving System , 1986, CADE.

[22]  Wolfgang Rautenberg,et al.  Modal tableau calculi and interpolation , 1983, J. Philos. Log..

[23]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[24]  Stéphane Demri,et al.  A framework for the transfer of proofs, lemmas and strategies from classical to non classical logics , 1993, Stud Logica.