Orthogonality correction in the conjugate-gradient method

Abstract This paper describes a simple algorithm for calculating the carryover term β in the conjugate-gradient method. The proposed algorithm incorporates an orthogonality correction as well as an automatic restart. Its performance is compared with alternate β forms reported, using five test functions and two cases of parameter estimation.

[1]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[2]  R. H. Fariss,et al.  Transformational Discrimination for Unconstrained Optimization , 1972 .

[3]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[4]  M. J. D. Powell,et al.  An Iterative Method for Finding Stationary Values of a Function of Several Variables , 1962, Comput. J..

[5]  C. L. Wu,et al.  Solution of reaction and heat flow problems by nonlinear estimation , 1968 .

[6]  E. Polak,et al.  Efficient Implementations of the Polak–Ribière Conjugate Gradient Algorithm , 1972 .

[7]  H. Mukai Readily implementable conjugate gradient methods , 1979, Math. Program..

[8]  M. J. Box A Comparison of Several Current Optimization Methods, and the use of Transformations in Constrained Problems , 1966, Comput. J..

[9]  A. Perry A Modified Conjugate Gradient Algorithm for Unconstrained Nonlinear Optimization , 1975 .

[10]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[11]  L. Dixon Conjugate Gradient Algorithms: Quadratic Termination without Linear Searches , 1975 .

[12]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[13]  Avinoam Perry,et al.  Technical Note - A Modified Conjugate Gradient Algorithm , 1978, Oper. Res..

[14]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[15]  J. Kowalik,et al.  A conjugate-gradient optimization method invariant to nonlinear scaling , 1979 .