Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial.

[1]  G. Laverman,et al.  The albuminuria‐lowering response to dapagliflozin is variable and reproducible among individual patients , 2017, Diabetes, obesity and metabolism.

[2]  K. Mahaffey,et al.  Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes , 2017, The New England journal of medicine.

[3]  H. Heerspink,et al.  Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function. , 2017, Clinical journal of the American Society of Nephrology : CJASN.

[4]  M. Jardine,et al.  Canagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects. , 2017, Journal of the American Society of Nephrology : JASN.

[5]  J. Coresh,et al.  Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. , 2017, Kidney international.

[6]  A. Paterson,et al.  Albuminuria Changes and Cardiovascular and Renal Outcomes in Type 1 Diabetes: The DCCT/EDIC Study. , 2016, Clinical journal of the American Society of Nephrology : CJASN.

[7]  Deepak L. Bhatt,et al.  Effect of Saxagliptin on Renal Outcomes in the SAVOR-TIMI 53 Trial , 2016, Diabetes Care.

[8]  R. Holman,et al.  Effect of Sitagliptin on Kidney Function and Respective Cardiovascular Outcomes in Type 2 Diabetes: Outcomes From TECOS , 2016, Diabetes Care.

[9]  Lawrence A Leiter,et al.  Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. , 2016, The New England journal of medicine.

[10]  D. Fitchett,et al.  Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. , 2016, Circulation.

[11]  J. Udell,et al.  No Need to Sugarcoat the Message: Is Cardiovascular Risk Reduction From SGLT2 Inhibition Related to Natriuresis? , 2016, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[12]  Volkmar Falk,et al.  2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure , 2016, Revista espanola de cardiologia.

[13]  P. Groop,et al.  The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes , 2016, Diabetologia.

[14]  Eva Johnsson,et al.  Dapagliflozin reduces albuminuria over 2 years in patients with type 2 diabetes mellitus and renal impairment , 2016, Diabetologia.

[15]  John M Lachin,et al.  Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. , 2016, The New England journal of medicine.

[16]  John B Buse,et al.  Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. , 2016, The New England journal of medicine.

[17]  H. Heerspink,et al.  Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin‐angiotensin blockers , 2016, Diabetes, obesity & metabolism.

[18]  H. Parving,et al.  Determining the Optimal Protocol for Measuring an Albuminuria Class Transition in Clinical Trials in Diabetic Kidney Disease. , 2016, Journal of the American Society of Nephrology.

[19]  D. Cherney,et al.  Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. , 2016, Kidney international.

[20]  S. Takakura,et al.  Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. , 2016, Life sciences.

[21]  Akshay S. Desai,et al.  Is a reduction in albuminuria associated with renal and cardiovascular protection? A post hoc analysis of the ALTITUDE trial , 2016, Diabetes, obesity & metabolism.

[22]  B. Zinman,et al.  Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial , 2016, European heart journal.

[23]  B. Zinman,et al.  Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. , 2015, The New England journal of medicine.

[24]  J. Hoekman,et al.  Drug-Induced Reduction in Albuminuria Is Associated with Subsequent Renoprotection: A Meta-Analysis. , 2015, Journal of the American Society of Nephrology : JASN.

[25]  V. Woo,et al.  Policies, Guidelines and Consensus Statements: Pharmacologic Management of Type 2 Diabetes-2015 Interim Update. , 2015, Canadian journal of diabetes.

[26]  S. Yamagishi,et al.  Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation , 2015, Hormone and Metabolic Research.

[27]  D. Cherney,et al.  Sodium–glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy , 2015, Current opinion in nephrology and hypertension.

[28]  B. Hohenstein,et al.  The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. , 2014, American journal of physiology. Renal physiology.

[29]  B. Zinman,et al.  Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™) , 2014, Cardiovascular Diabetology.

[30]  A. Mithal,et al.  Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. , 2014, The lancet. Diabetes & endocrinology.

[31]  U. Broedl,et al.  Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus , 2014, Circulation.

[32]  Chi Pang Wen,et al.  Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention , 2013, The Lancet.

[33]  S. Yusuf,et al.  Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. , 2011, Kidney international.

[34]  G. Remuzzi,et al.  Effects of verapamil added-on trandolapril therapy in hypertensive type 2 diabetes patients with microalbuminuria: the BENEDICT-B randomized trial , 2011, Journal of hypertension.

[35]  G. Viberti,et al.  Proteinuria in diabetes: bystander or pathway to cardiorenal disease? , 2010, Journal of the American Society of Nephrology : JASN.

[36]  R. Glassock Is the Presence of Microalbuminuria a Relevant Marker of Kidney Disease? , 2010, Current hypertension reports.

[37]  M. Woodward,et al.  Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis , 2010, The Lancet.

[38]  S. Solomon,et al.  Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE): rationale and study design. , 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[39]  Zhongxin Zhang,et al.  Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. , 2004, Kidney international.

[40]  B. Brenner,et al.  Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. , 2001, The New England journal of medicine.